Canadian Guidelines for the Management of Plaque Psoriasis

1st Edition, June 2009
TABLE OF CONTENTS

Canadian Guidelines for the Management of Plaque Psoriasis

NOTES TO READERS .. iii

GUIDELINES COMMITTEE, REVIEWERS, AND EDITORIAL SUPPORT .. iii

ACKNOWLEDGMENTS .. v

DISCLOSURES .. v

LIST OF ABBREVIATIONS ... viii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: METHODS ... 6

CHAPTER 3: DEFINITIONS .. 10

CHAPTER 4: DELIVERY OF CARE .. 16

CHAPTER 5: MANAGEMENT OF MILD PLaque PSORIASIS ... 19

CHAPTER 6: MANAGEMENT OF MODERATE TO SEVERE PLAQUE PSORIASIS ... 27

CHAPTER 7: SPECIAL POPULATIONS AND CIRCUMSTANCES ... 46

CHAPTER 8: EXACERBATION AND FLARE OF PSORIASIS ... 58

CHAPTER 9: MANAGEMENT OF FACIAL, FLEXURAL, AND GENITAL PSORIASIS 62

CHAPTER 10: MANAGEMENT OF NAIL PSORIASIS ... 65

CHAPTER 11: MANAGEMENT OF SCALP PSORIASIS ... 71

CHAPTER 12: MANAGEMENT OF PALMOPLANTAR PSORIASIS ... 75

CHAPTER 13: SOCIAL AND PSYCHOLOGICAL ASPECTS OF PSORIASIS .. 79

CHAPTER 14: COMORBIDITIES ... 84

CHAPTER 15: THE FUTURE OF PSORIASIS CARE ... 89

APPENDIX: TRADE NAME/GENERIC NAME TRANSLATOR .. 94
NOTES TO READERS

Disclaimer: These Guidelines are intended to assist physicians in clinical decision making. As always, physicians should use their best clinical judgment when determining whether and how to apply treatment recommendations. Clinical decisions must take into account the patient’s individual circumstances and any newer evidence that may come to light regarding treatments for plaque psoriasis. This document is not intended to substitute for or supersede the guidance found in the relevant Canadian product monographs or other official information available for the therapeutics discussed. Every reasonable effort has been made to ensure the accuracy of this document; any errors will be corrected in the next edition.

Drug names: Generic names have been used throughout this document. A trade name/generic name translator has been provided as an appendix.

Website: These Guidelines are also available online at http://www.dermatology.ca/psoriasisguidelines

Address academic correspondence to: Kim Alexander Papp MD PhD FRCPC, Probit medical Research, 135 Union Street East, Waterloo, Ontario, Canada N2J 1C4. Email: kapapp@probitymedical.com

COMMITTEE, REVIEWERS, AND EDITORIAL SUPPORT

GUIDELINES COMMITTEE

STEERING COMMITTEE

Kim Alexander Papp MD PhD FRCPC (Chair)
K. Papp Clinical Research, Waterloo, Ontario;
Probity Medical Research, Waterloo, Ontario

Wayne Gulliver MD FRCPC
Newlab Clinical Research Inc., St John’s,
Newfoundland; Memorial University,
St John’s, Newfoundland

Charles W. Lynde MD FRCPC
Lynderm Research Inc., Markham, Ontario;
University of Toronto, Toronto, Ontario

Yves Poulin MD FRCPC
Centre Dermatologique du Québec
Métropolitain, Québec, Québec;
Université Laval, Québec, Québec

EXPERT PANEL

Stewart P. Adams MD FRCPC
Adams Dermatology, Calgary, Alberta

Lorne Albrecht MD FRCPC
Guildford Dermatology, Surrey, British Columbia

Benjamin Barankin MD FRCPC
The Dermatology Centre, Toronto, Ontario

Kirk Barber MD FRCPC
Kirk Barber Research, Calgary, Alberta

Marc Bourcier MD FRCPC
Durondel C.P. Inc., Moncton, New Brunswick;
affiliated with the Université de Sherbrooke,
Sherbrooke, Québec

Wayne Carey MD FRCPC
Siena Medical Research Corporation,
Westmount, Québec

Lyn C. Guenther MD FRCPC
The Guenther Dermatology Research Centre,
London, Ontario; The University of Western
Ontario, London, Ontario

Vincent C. Ho MD FRCPC
University of British Columbia, Vancouver,
British Columbia
EDITORIAL SUPPORT

SCRIPT, Toronto, Ontario:
Helen Leask PhD, Managing Editor, medical writer
John Ashkenas PhD, Senior Editor, medical writer
Shereen Joseph BSc, medical writer
Meenakshi Kashyap PhD, medical writer
Oren Traub MD PhD, medical writer
Sarah von Riedemann MSc, medical writer

COMMUNITY REVIEWERS

The Guidelines Committee would like to thank all Community Reviewers for their assistance. Community Reviewers may have reviewed all chapters or only those in which they felt they had expertise or an interest.

Bruce F. Bebo Jr PhD
National Psoriasis Foundation, Portland, Oregon, USA

Vivian Bykerk MD FRCPC
University of Toronto, Toronto, Ontario, Canada

Charles N. Ellis MD
University of Michigan Medical School, Ann Arbor, Michigan, USA

Steven R. Feldman MD PhD
Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA

Nigel Flook MD CCFP FCFP
University of Alberta, Edmonton, Alberta, Canada

Dafña D. Gladman MD FRCPC
University of Toronto, Toronto, Ontario, Canada

Richard M. Haber MD FRCPC
University of Calgary, Calgary, Alberta, Canada

Herag Hamboyan MD CCFP
Oakville, Ontario, Canada

Dana W. Hanson MD
Canadian Medical Association, Ottawa, Ontario, Canada

Gerald G. Krueger MD
University of Utah, Salt Lake City, Utah, USA

Gilles Lauzon MD PhD
Canmore General Hospital, Canmore, Alberta, Canada

Mark Lebwohl MD
Mount Sinai School of Medicine, New York, New York, USA

Alan Menter MD
Baylor Research Institute, Dallas, Texas, USA

Richard K. Scher MD
University of North Carolina, Chapel Hill, North Carolina, USA

Peter C. M. van de Kerkhof MD
Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands

Franklyne K. Vincent MD FRCPC
St. Joseph’s Health Centre, Toronto, Ontario, Canada

Richard A. Ward MD CCFP FCFP
University of Calgary, Calgary, Alberta, Canada
ACKNOWLEDGMENTS

Financial assistance for the development of these Guidelines was generously provided by the following sponsors (in alphabetical order): Abbott Laboratories, Limited; Amgen Canada Inc.; Astellas Pharma Canada, Inc.; EMD Serono Canada Inc.; Galderma Canada Inc.; Isotechnika Inc.; Janssen-Ortho Inc.; LEO Pharma Inc.; Schering-Plough Canada Inc.; and Wyeth.

Sponsors were permitted to submit unpublished manuscripts for consideration by the Guidelines Committee, with the proviso that the article had to be accepted for peer-reviewed publication by a designated cut-off date. Sponsors were not involved in any other aspect of the Guidelines’ development, nor were they informed of the make-up of the Guidelines Committee.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The following committee members report that, during the 5 years prior to the Guidelines’ development, they had a financial interest in the following companies:

Wayne Carey: Consultancy*: Abbott Laboratories, Limited; Amgen Canada Inc.; Centocor Ortho Biotech Inc.; Isotechnika Inc.; and Schering-Plough Canada Inc. Contract research: Abbott Laboratories, Limited; Amgen Canada Inc.; Centocor Ortho Biotech Inc.; Isotechnika Inc.; and Schering-Plough Canada Inc.

Benjamin Barankin: Consultancy*: Abbott Laboratories, Limited; Amgen Canada Inc.; Astellas Pharma Canada, Inc.; EMD Serono Canada Inc.; Galderma Canada Inc.; Graceway Pharmaceuticals; Janssen-Ortho Inc.; LEO Pharma Inc.; Novartis Pharmaceuticals Canada Inc.; sanofi-aventis; Schering-Plough Canada Inc.; Stiefel Laboratories, Inc.; and Wyeth.

Janssen-Ortho Inc.; LEO Pharma Inc.; Novartis Pharmaceuticals Canada Inc.; Schering-Plough Canada Inc.; and Stiefel Laboratories, Inc.

John Toole: Consultancy*: Abbott Laboratories, Limited; Amgen Canada Inc.; Astellas Pharma Canada, Inc.; Biogen Idec Canada Inc.; EMD Serono Canada Inc.; LEO Pharma Inc.; and Schering-Plough Canada Inc. Contract research: Abbott Laboratories, Limited; Amgen Canada Inc.; and Astellas Pharma Canada, Inc.

Ronald Vender: Consultancy*: Abbott Laboratories, Limited; Amgen Canada Inc.; Astellas Pharma Canada, Inc.; EMD Serono Canada Inc.; Galderma Canada Inc.; Isotechnika Inc.; Janssen-Ortho Inc.; LEO Pharma Inc.; and Schering-Plough Canada Inc.
Investigator-initiated studies: Amgen Canada Inc.
Contract research: Abbott Laboratories, Limited; Amgen Canada Inc.; Astellas Pharma Canada, Inc.; Barrier Therapeutics, Inc.; Biogen Idec Canada Inc.; Celgene Corporation; Centocor Ortho Biotech Inc.; EMD Serono Canada Inc.; Galderma Canada Inc.; Isotechnika Inc.; LEO Pharma Inc.; Janssen-Ortho Inc.; Novartis Pharmaceuticals Canada Inc.; and Pfizer Canada Inc.

*Consultancy includes advisory boards, editorial advice, podium presentations, and travel grants.

During the 5 years prior to the Guidelines' development, the editorial team at SCRIPT had ongoing business relationships with the following companies (in alphabetical order): Amgen Canada Inc.; Astellas Pharma Canada, Inc.; EMD Serono Canada Inc.; and sanofi-aventis Canada Inc.
LIST OF ABBREVIATIONS

Canadian Guidelines for the Management of Plaque Psoriasis

- **AGREE** = Appraisal of Guidelines for Research & Evaluation
- **AIDS** = acquired immune deficiency syndrome
- **AZT** = zidovudine
- **BIW** = biweekly
- **BSA** = body surface area
- **CDA** = Canadian Dermatology Association
- **CVD** = cardiovascular disease
- **DCs** = dendritic cells
- **DISH** = diffuse idiopathic skeletal hyperostosis
- **DLQI** = Dermatology Life Quality Index
- **DQOLS** = Dermatology Quality-of-Life Scales
- **FAEs** = fumaric acid esters
- **FFG** = facial, flexural, and genital
- **FDA** = US Federal Drug Administration
- **GSS** = Global Severity Score
- **HAART** = highly active antiretroviral treatment
- **HADS** = Hospital Anxiety and Depression Scale
- **HBV** = hepatitis B virus
- **HCV** = hepatitis C virus
- **HIV** = human immunodeficiency virus
- **HRQL** = Health-Related Quality of Life
- **IL** = interleukin
- **LCs** = Langerhans cells
- **LoE** = level of evidence
- **MI** = myocardial infarction
- **NAPSI** = Nail Psoriasis Severity Index
- **NAS** = Nail Area Severity
- **NB** = narrowband
- **NSAIDs** = nonsteroidal anti-inflammatory drugs
- **OLS** = Overall Lesion Severity
- **PASI** = Psoriasis Area and Severity Index
- **PDI** = Psoriasis Disability Index
- **PGA** = Physician’s Global Assessment
- **PIIINP** = procollagen III aminopeptide
- **PNSS** = Psoriasis Nail Severity Score
- **PPP** = palmoplantar pustulosis
- **PQLQ** = Psoriasis Quality of Life Questionnaire
- **PsA** = psoriatic arthritis
- **PSA Scale** = Psoriatic Arthritis Scale
- **PSSI** = Psoriasis Scalp Severity Index
- **PUVA** = UVA with psoralen
- **QoL** = quality of life
- **RA** = rheumatoid arthritis
- **RAMBAs** = retinoic acid metabolism-blocking agents
- **RCTs** = randomized controlled trials
- **RePUVA** = retinoid + PUVA
- **ReUVB** = retinoid + UVB
- **SCC** = squamous cell carcinoma
- **SF-36** = Short Form Health Survey
- **SIGN** = Scottish Intercollegiate Guidelines Network
- **TB** = tuberculosis
- **TCIs** = topical calcineurin inhibitors
- **TNF** = tumour necrosis factor
- **TSS** = Total Severity Score
- **UV** = ultraviolet
- **VAS** = Visual Analogue Scale
Plaque psoriasis is a chronic inflammatory skin disease that requires ongoing, lifelong care. Despite a widely held misconception that it is somehow less serious than other, non-dermatological illnesses, plaque psoriasis imposes a burden of disease that extends far beyond the physical dermatological symptoms; its impact on physical and mental function is similar to that of cancer, arthritis, hypertension, heart disease, diabetes, and depression.1

Plaques are often highly visible and may lead to stigmatization, high levels of stress, and poor self-esteem.2-7 Psoriasis can therefore have a pervasive effect on social functioning, interpersonal relationships, and success at school or work.8,9 Not surprisingly, people with plaque psoriasis have higher rates of depression10 and suicidal ideation.11,12

Psoriasis patients are also at risk of a wide variety of serious comorbidities that add to their burden, complicate management, and increase the risk of early death. Cardiovascular disease (CVD) and metabolic syndrome are more common in psoriasis patients (see Chapter 14: Comorbidities). Psoriasis per se is a risk factor for CVD, conferring an approximately threefold increased relative risk of myocardial infarction (MI) in younger psoriasis patients.13 Severe psoriasis is also associated with an increased risk of mortality, leading to a 3.5- and 4.4-year reduction in life expectancy for males and females, respectively, relative to individuals without psoriasis.14

Individuals with plaque psoriasis are also at increased risk of inflammatory diseases occurring at sites remote from the skin (see Chapter 14: Comorbidities). The most common and best known of these is a seronegative, erosive arthritis. Psoriatic arthritis, now considered a distinct syndrome, occurs in approximately one-third of psoriasis patients, with the onset of rheumatic symptoms commonly lagging behind skin symptoms by a decade or more. Autoimmune disorders of the gut, manifesting as inflammatory bowel disease (Crohn’s disease or ulcerative colitis),15 are also associated with psoriasis.

Plaque psoriasis is frequently undertreated: recent studies in the US found that as many as 80% of patients had not received treatment in the previous year,16 and 40% were receiving no treatment, even for the most severe disease.17 The situation in Canada is unclear, since no similar data have yet been published; however, it is reasonable to assume that some degree of undertreatment is universal in this complex disease.

KEY POINT

However effective a therapy, it won’t work if the patient doesn’t use it. The central theme of these Guidelines is that physicians should not only choose therapies that work, but those that the patient will work with.

Given the prevalence of plaque psoriasis, all physicians in Canada and elsewhere are likely to confront this burdensome chronic disease in the course of routine care. With new therapeutics introduced into the market at a rapid pace in recent years, dermatologists and other practitioners may be ill-equipped to choose among the various treatment options. The following chapters are therefore designed to offer solid, evidence-based recommendations, in the briefest possible form, to both specialist and non-specialist physicians.

Presentation of psoriasis

The term ‘psoriasis’ encompasses a set of chronic inflammatory dermatoses, of which plaque psoriasis (psoriasis vulgaris) is the most common. Plaque psoriasis is distinguished by the presence of red, erythematous plaques, usually covered with silver, flaking scales. These plaques are frequently itchy or
painful; depending on their extent and location, they may also be physically debilitating or socially isolating.

Plaque psoriasis can be distinguished by its morphology from other forms, such as pustular, erythrodermic, and guttate psoriasis, although these different forms can sometimes be observed in the same individual. Thus, a history of guttate psoriasis, precipitated by streptococcal pharyngitis in a child or adolescent, is associated with increased risk of plaque psoriasis later in life. Likewise, a person with chronic plaque psoriasis may experience an acute flare of pustular psoriasis. Pustular psoriasis affecting the palms and soles, which may be a genetically distinct condition, can present either independently or comorbidly with plaque psoriasis (see Chapter 12: Management of palmoplantar psoriasis). The central role of T cells in psoriasis pathophysiology

Histologically, psoriatic plaques are distinguished by three hallmark features: extravagant growth of poorly differentiated keratinocytes; the presence of prominent, dilated dermal blood vessels; and an inflammatory infiltrate, featuring T cells of several subtypes, along with neutrophils and macrophages.

T cell–driven inflammation is responsible for the keratinocyte growth and the angiogenesis seen in the psoriatic plaque, as has become clear in recent years. All of the newly introduced therapies for psoriasis were therefore devised to target T cells or their inflammatory mediators, including cytokines, receptors, and ligands. Indeed, with the exception of adjunctive moisturizers and exfoliants, most of the classic topical, systemic, and phototherapies also act at least in large part by quelling this same immune response.

T cells secreting the so-called type 1 cytokines (including tumour necrosis factor [TNF], as well as interferon-γ [IFN-γ] and interleukins-1 [IL-1] 2) are active in the dermis and epidermis of the psoriatic plaque. Memory type 1 T cells, including helper and cytolytic (Th1 and Tc1) subtypes, are present even in the non-inflamed skin of individuals with established psoriasis. In the dermis underlying the psoriatic plaque, T cells aggregate with antigen-presenting cells such as dendritic cells, interactions that would ordinarily be expected to be restricted to peripheral lymph nodes. It has been proposed that these interactions contribute to the persistence of the psoriatic plaque.

In addition to Th1 cells, a more recently identified T cell subset, the IL-17-secreting T helper cells (Th17), appears to play a central role in psoriasis. When stimulated by the cytokine IL-23, these Th17 cells express TNF and various other factors that can stimulate keratinocyte growth. Rapidly proliferating keratinocytes in a plaque also release cytokines, thus recruiting additional immunocytes (T cells, neutrophils, and natural killer cells) and setting up a vicious cycle that can sustain or extend local inflammation.

The low activity of regulatory T cells (Treg) in the psoriatic plaque may be another key abnormality that permits the inflammatory state to occur. Treg deficits are also seen in such disorders as type 1 diabetes and multiple sclerosis, conditions that are marked by chronic, organ-specific inflammation. Langerhans cells (LCs), a class of ‘professional’ antigen-presenting cells found in the epidermis, are likewise proposed to help dampen cutaneous inflammation. Within the psoriatic plaque, the LC population is strikingly low relative to neighbouring symptom-free skin. Effective antipsoriatic therapy with a TNF inhibitor rapidly restores this population. The proposed anti-inflammatory function of LCs is in contrast to the action of other antigen-presenting cell populations such as macrophages, myeloid dendritic cells (DCs), and plasmacytoid DCs. These cell types are thought to help drive psoriatic inflammation by producing IL-23 and thereby activating Th17 cells. Depletion of macrophages and DCs from the psoriatic plaque seems to be an early step in the successful clearance of a psoriatic plaque by TNF inhibitors.

Genetics

Plaque psoriasis, like other common conditions, is a disease with substantial heritability that fails to conform to a simple, single-gene Mendelian model. At least 20 genetic loci have been proposed to harbour psoriasis susceptibility (PSORS) genes, i.e., genes that may interact with environmental factors and with other features of a person’s genetic background to increase the likelihood of psoriasis development. Several of these loci, notably PSORS1, have been identified repeatedly in independent populations.
After many years of effort, technological advances in gene mapping have now begun to yield the relevant genes, including the gene encoding the major histocompatibility protein HLA-C (mapping to the PSORS1 locus), where one specific allele, HLA-Cw*0602, has been tied to psoriasis risk in multiple studies in Asians and Caucasians. Sequence variations affecting expression of the gene for TNF are implicated specifically in plaque psoriasis and psoriatic arthritis, with no apparent effect on the risk of pustular psoriasis. Other recent developments include the identification of mutations in subunits of IL-23 and the IL-23 receptor, associated with psoriasis and Crohn’s disease, and the finding that \(\text{IL15} \) represents the psoriasis gene at the PSORS9 locus. Probable psoriasis genes at other PSORS loci have also been identified.

Genetic analysis has helped clarify some of the variability that has long been noted in the natural history of psoriasis. For instance, individuals carrying the risk allele HLA-Cw*0602 present with plaque psoriasis earlier than non-carriers, and homozygotes (carrying two copies of this allele) present at a still earlier age, although with no greater severity than is seen among HLA-Cw*0602 heterozygotes. Female carriers of this HLA-C allele typically experience substantial relief from symptoms during pregnancy, whereas pregnancy-associated remission is reported to be rare in non-carriers. Conversely, nail dystrophy and pustular forms of psoriasis have been found preferentially among non-carriers.

Despite the recent successes and the promise of new targeted therapies based on the growing molecular understanding of the disease, genetic analysis has yet to alter the clinical landscape of psoriasis. Treatment decisions must still be made empirically, without regard to the patient’s genotype.

Psoriasis epidemiology and natural history

Reported prevalence estimates for psoriasis vary substantially, probably reflecting methodological differences as well as genuine genetic, demographic, and environmental differences between populations. Prevalence differs greatly across racial groups: West Africans are among those with a dramatically lower prevalence of psoriasis than Europeans, consistent with an approximately twofold difference between African and Caucasian Americans (1.3% versus 2.5%). Prevalence among East Asians is under 1%.

Large-scale population studies in the United Kingdom and the United States found that 1.5% and 2.6% of individuals, respectively, had been diagnosed with psoriasis. As shown in Table 1, application of age-specific psoriasis prevalence rates from the United Kingdom to the Canadian population suggests that more than 500 000 Canadians (approximately 1.7% of the population) have psoriasis. This affected population includes approximately 40 000 older individuals (≥ 70 years) and 20 000 children (≤ 10 years). Geriatric and pediatric psoriasis pose their own treatment challenges, discussed in Chapter 7 (Special populations and circumstances).

The events leading to initial presentation of psoriasis, or to a worsening of existing symptoms, are not well understood. Physical trauma to the skin, streptococcal infection, exposure to various drugs (reviewed in Abel et al.), and cigarette smoking are among the commonly cited environmental factors that appear to aggravate the condition (see Chapter 8: Exacerbation and flare of psoriasis). Conversely, severity typically abates during summer months, consistent with long-standing evidence that natural or artificial ultraviolet (UV) exposure can be therapeutic.

In general, spontaneous, durable remission is rare, and patients and physicians should expect psoriasis to persist throughout life, with unpredictable periods of improvement and exacerbation.

Priorities for care in these Guidelines

The development of evidence-based recommendations for treating plaque psoriasis, as it presents in different forms and locations, presents a singular challenge. Standard treatments with long histories in dermatological practice are commonly supported by a relatively slender evidence base, compared to newer agents that have passed through phase 3 clinical trials. Head-to-head comparisons of therapies are rare in this field, making it difficult to judge the relative efficacy of different pharmacologic or phototherapeutic approaches. In preparing these Guidelines, we have therefore emphasized the broad range of therapeutic options that the physician should consider, deferring as much as possible to the patient’s preferences and priorities.
The pragmatic value of such a patient-centred approach is clear from the recent literature on treatment adherence. There is considerable evidence from clinical trials that dermatology patients commonly undertreat themselves, while inflating their reported use of the assigned treatment.47,48 In general practice, non-adherence may be still more common, with direct deleterious effects on treatment efficacy.48 This view is consistent with the finding that adherence spikes immediately prior to an office visit and the observation that the efficacy reported in phase 3 trials is frequently greater than that found in post-marketing studies (see Ali et al.49 and references therein). Conversely, controlled treatment application in an inpatient setting, or changes in drug formulation that make patients more willing to use the treatment as instructed, can lead to a sudden dramatic increase in efficacy.

Physicians caring for patients with plaque psoriasis therefore face two tasks. First, they must identify therapies that are effective, safe, and suited to the symptoms that the patient presents. Second, and no less important, they must choose from among the appropriate options the one that the patient is most likely to use consistently, over the long term, to achieve and maintain control of his or her condition.

These Guidelines offer recommendations, based on a rigorous evaluation of the available evidence, to guide the physician in the first task. The second task — determining an optimal therapy in a given case — remains the province of the individual physician, taking into account the patient's habits and priorities and any practical considerations that may limit the availability of specific therapies.

Table 1. Estimated prevalence of psoriasis in Canada

<table>
<thead>
<tr>
<th>Age group</th>
<th>Canadian population*</th>
<th>Estimated psoriasis prevalence by age group (per 10 000)†</th>
<th>Estimated number of Canadians with psoriasis by age group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 9</td>
<td>3 499 915</td>
<td>55.02</td>
<td>19 257</td>
</tr>
<tr>
<td>10 to 19</td>
<td>4 220 415</td>
<td>137.37</td>
<td>57 976</td>
</tr>
<tr>
<td>20 to 29</td>
<td>4 065 965</td>
<td>151.04</td>
<td>61 412</td>
</tr>
<tr>
<td>30 to 39</td>
<td>4 228 500</td>
<td>178.01</td>
<td>75 272</td>
</tr>
<tr>
<td>40 to 49</td>
<td>5 231 055</td>
<td>203.43</td>
<td>106 415</td>
</tr>
<tr>
<td>50 to 59</td>
<td>4 441 920</td>
<td>222.78</td>
<td>98 957</td>
</tr>
<tr>
<td>60 to 69</td>
<td>2 824 445</td>
<td>225.95</td>
<td>63 818</td>
</tr>
<tr>
<td>70 to 79</td>
<td>1 933 360</td>
<td>161.39</td>
<td>31 202</td>
</tr>
<tr>
<td>80 to 89</td>
<td>989 390</td>
<td>88.44</td>
<td>8 750</td>
</tr>
<tr>
<td>Over 90</td>
<td>177 925</td>
<td>47.33</td>
<td>842</td>
</tr>
<tr>
<td>Total</td>
<td>31 612 895</td>
<td>47.33</td>
<td>523 902</td>
</tr>
</tbody>
</table>

*Data from Canadian 2006 Census.50
† Based on published age-specific prevalence rates in the United Kingdom.42
References

CHAPTER 2: METHODS

Canadian Guidelines for the Management of Plaque Psoriasis

Overview of the process
These first Canadian Guidelines for the Management of Plaque Psoriasis were created by a Guidelines Committee of 16 Canadian dermatologists. Following review by the wider medical community and the Therapeutics Committee of the Canadian Dermatology Association (CDA), the Guidelines were formally endorsed by the CDA. The manuscript was developed by drawing on systematically graded evidence from an extensive literature review, as well as clinical judgment.

The Guidelines development process was designed to be as reproducible and as transparent as possible, in order to provide useful clinical guidance, based on the best available clinical evidence that could stand up to scrutiny. Therefore, the writing and revision process was guided by the following principles:

- Each recommendation should address a clinically important question concerning either the diagnosis or management of plaque psoriasis or its comorbidities
- Each recommendation had to be supported by the best evidence currently available, which would be identified by one or more citations next to the recommendation
- The strength of the evidence and the grade of recommendation should be stated, based on a pre-specified grading system
- Recommendations based on clinical judgment alone should be explicitly identified as such
- Industry partners would be allowed to contribute papers to the literature review but would have no role in appraisal of the evidence or development of the manuscript

As far as possible within timeline and budget constraints, the Guidelines process endeavoured to meet the standards of the international AGREE (Appraisal of Guidelines for Research & Evaluation) Instrument1 and, when it became available, the Canadian Medical Association’s newly published Handbook on Clinical Practice Guidelines.2

KEY POINT

The Guideline development process was designed to be as reproducible and as transparent as possible, in order to provide useful clinical guidance, based on the best available clinical evidence that could stand up to scrutiny.

Evidence-based guidelines in psoriasis
The intention of all evidence-based guidelines is to provide clinicians with the best available evidence to assist them in making clinical decisions. However, it is clearly impractical to insist on high-quality evidence as a basis for all decision making. Since physicians must often act despite the absence of data, an overly rigid approach to clinical guidance would not serve their interests or those of patients. This is especially true in the context of psoriasis. Not only is evidence lacking in many key areas of psoriasis management, but older therapies in extensive use lack the long-term trial data that have been required of newer therapies. Thus, psoriasis management has typically relied heavily on empirical trial and clinical judgment. The challenge for the developers of these Guidelines has been to capture this wealth of experience while at the same time drafting recommendations in a manner that is transparent and reproducible. The pragmatic solution is to employ a rating scale that separately evaluates the level of evidence and the grade of recommendation.

In the widely used Scottish Intercollegiate Guidelines Network (SIGN) system, applied here, the evidence behind a recommendation must be evaluated according to strict, pre-specified rules (Table 1). In contrast, when assigning grades to the recommendations, the developers retain the freedom to factor in their ‘considered judgment’ based on clinical experience, as well as the formal level of evidence. SIGN thus allows guideline developers to take into account the quantity, quality, and
consistency of the evidence, the generalizability of the study findings, and their potential clinical impact. In essence, a high grade in SIGN reflects a high degree of confidence that the recommendation will stand up to further scrutiny; a lower grade simply indicates that the recommendation is apt to change as the body of data evolves. Hence, as noted by other authors, the grade of the recommendation does not reflect its clinical importance or how strongly the Committee members felt about it; it reflects the strength of the supporting evidence and the weight of clinical experience. Thus, even though formal evidence is lacking, a Grade D recommendation (evidence from case reports and expert opinion) may be very helpful for clinical management until further information comes to light.

Structure of the Guidelines Committee
The Guidelines Committee was subdivided into four subcommittees: the Steering Committee, the Section Heads, the Evidence Committee, and the Recommendations Committee.

The Steering Committee set the parameters for the Guidelines and monitored the progress of the manuscript. The Section Heads worked with a team of professional medical writers to produce the first draft of the manuscript for consideration by the Steering and Evidence Committees. The Evidence Committee ratified the assigned level of evidence for each recommendation, while the Recommendations Committee did the same for the assigned grade of each recommendation. To ensure independent review, no member could serve on both the Evidence and Recommendations Committees, and Section Heads did not serve on either of these committees.

The literature search
Each Section Head and his or her writing team developed a list of specific clinical questions for which recommendations would eventually be developed. The clinical questions allowed the generation of key terms that were used by a professional librarian to search PubMed and EMBASE for papers on psoriasis and antipsoriatic therapies published in 1980 or later. All peer-reviewed literature was considered. Papers were also identified by checking the reference lists of reviews and other guidelines, hand-searching personal libraries, forward-tracking citations, and identifying further key literature (including newly published papers) as writing progressed.

In all, 5439 peer-reviewed research articles were identified and the citations subsequently maintained in an EndNote library. Meeting abstracts and posters, narrative reviews, and commentaries were excluded (except as a source of references) because they could not be critically appraised. Case reports were excluded from the initial literature search, although writers were permitted to cite them if necessary to address clinical questions that could not be answered by more systematic studies.

Sponsors were invited to submit peer-reviewed articles and unpublished manuscripts for consideration until a cut-off date of September 15, 2007. Unpublished data included in the initial draft Guidelines were required to be accepted for publication by February 15, 2008, to remain part of the final document.

Drafting of the manuscript
Following the literature review, the Section Heads worked with the writers of each section, briefing them on key studies, reviewing outlines and draft recommendations, and editing successive drafts of the manuscript. As mentioned above, the first full draft of the manuscript underwent review by the Evidence and Recommendations Committees before being presented to the full Guidelines Committee.

In May 2008, the Guidelines Committee convened to review, debate, and finalize the Guidelines. For a recommendation to be adopted, support was required of no less than two-thirds of Committee members (i.e., ≥ 11 people). Proxies were permitted.

Following adoption by the full Guidelines Committee, the Guidelines were circulated for comment to patient organizations, dermatologists, and primary care physicians, both nationally and internationally, and reviewed and subsequently endorsed by the Therapeutics Committee of the Canadian Dermatology Association. Industry sponsors saw the manuscript for the first time at final draft; no changes were permitted at that stage.

Assignment of levels of evidence and grading the recommendations
A modified version of the SIGN system was used to assign levels of evidence and grade the
recommendations (Table 1). SIGN assigns levels of evidence (1++, 1+, 1–, 2++, 2+, 2–, 3, 4) according to the type and quality of the study. A grade of recommendation (A, B, C, D) is then applied according to the level of evidence. As noted earlier, ‘considered judgment’ allows some flexibility in converting the level of evidence into a recommendation grade, based on such subjective factors as the generalizability of the study findings to the relevant population.

Table 1. The modified SIGN scale⁴ used by the Evidence and Recommendations Committees

<table>
<thead>
<tr>
<th>Levels of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>High-quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias</td>
</tr>
<tr>
<td>1+</td>
<td>Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias</td>
</tr>
<tr>
<td>1–</td>
<td>Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias</td>
</tr>
<tr>
<td>2++</td>
<td>High-quality systematic reviews of case-control or cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality case-control or cohort studies with a very low risk of confounding, bias, or chance and a high probability that the relationship is causal</td>
</tr>
<tr>
<td>2+</td>
<td>Well-conducted case-control or cohort studies with a low risk of confounding, bias, or chance and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2–</td>
<td>Case-control or cohort studies with a high risk of confounding, bias, or chance and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>3</td>
<td>Non-analytic studies, e.g., case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grades of recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least one meta-analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; or A systematic review of RCTs or a body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results</td>
</tr>
<tr>
<td>B</td>
<td>A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1++ or 1+</td>
</tr>
<tr>
<td>C</td>
<td>A body of evidence including studies rated as 1–, 2–, or 2+, directly applicable to the target population and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++</td>
</tr>
<tr>
<td>D</td>
<td>Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+</td>
</tr>
</tbody>
</table>
References

CHAPTER 3: DEFINITIONS

Canadian Guidelines for the Management of Plaque Psoriasis

Types of psoriasis
The term ‘psoriasis’ encompasses a number of morphologically distinct presentations that can occur in isolation, simultaneously, or sequentially. Until recently, classification and description of these different phenotypes was not well standardized. Recent advances in our understanding of the genetic and pathogenic mechanisms leading to the different manifestations of psoriasis have necessitated more precise phenotypic classification. A recent consensus meeting of the International Psoriasis Council created the following simplified, phenotype-based classification of psoriasis, intended for use in both clinical practice and research.

Plaque psoriasis
This most common form of the disease is present in roughly 90% of psoriasis patients; it is characterized by red, scalloped lesions (plaques) at least 0.5 cm in diameter. Plaques may occur as single lesions at predisposed sites (e.g., knees, elbows) or as generalized disease across wider areas of the body. There is sharp demarcation between the plaque and surrounding normal skin. Expanding plaques may show clearance in the middle, leading to an annular pattern. Plaque psoriasis can be further classified according to specific anatomical sites and phenotypic variations.

Nail psoriasis
(see Chapter 10: Management of nail psoriasis)
Nail involvement is common in plaque psoriasis patients, and it occasionally presents as an isolated condition in the absence of skin plaques. Nail involvement can affect the nail bed and nail matrix and commonly leads to thickening, pitting, discoloration, and splitting of the nail plate, as well as separation of the nail plate from the nail bed.

Scalp psoriasis
(see Chapter 11: Management of scalp psoriasis)
The scalp is the body area most commonly affected by plaque psoriasis and is the initial site of presentation in many patients. Scalp involvement rarely extends more than 2 cm beyond the hairline.

Palmoplantar psoriasis (non-pustular)
(see Chapter 12: Management of palmoplantar psoriasis)
Plaque psoriasis on the palms of the hands or the soles of the feet can have a wide range of manifestations, from confluent redness and scaling without discernable plaques to poorly defined scaly or fissured areas to large plaques covering the palm or sole and extending to the surrounding skin.

Sebopsoriasis
The seborrheic form of plaque psoriasis is so named because of its similarity to seborrheic dermatitis, both in location (usually on the face, notably the nasolabial folds) and morphology (thin, red, well-demarcated lesions that may be ‘greasy’ in appearance). It may occur in isolation or be associated with plaque psoriasis elsewhere on the body; in the absence of other psoriasis, it may be difficult to distinguish from seborrheic dermatitis.
Non-plaque forms of psoriasis

Although these Guidelines focus on the treatment of plaque psoriasis, it is important to understand the presentation of non-plaque forms and their relationship to plaque psoriasis.

Guttate psoriasis

This form of psoriasis presents as an acute eruption of small papules on the trunk, limbs, or face. In about two-thirds of cases, the guttate flares are triggered by streptococcal infection.

Pustular psoriasis

Generalized pustular psoriasis is characterized by sheets of small, monomorphic pustules developing within erythrodermic skin or along the edges of expanding inflammatory plaques. It may arise from established plaque psoriasis or may present *de novo*. The most common variety is palmoplantar pustulosis (PPP; see Chapter 12: Management of palmoplantar psoriasis), which was traditionally viewed as a variant or manifestation of psoriasis. Indeed, PPP is associated with plaque psoriasis in about one-fifth of cases. However, it has been proposed that PPP constitutes a separate entity, due to its unique clinical, epidemiological, genetic, and biological features.

Another variant, also presenting with localized eruptions, is acrodermatitis continua of Hallopeau. This pustular disease involves the nail beds and the periungual area, with characteristic nail dystrophy, paronychial redness, scaling, and chronic periungual swelling. The condition is often associated with palmoplantar pustulosis or plaque psoriasis on other body sites.

Erythroderma

In erythrodermic psoriasis, the patient experiences acute or subacute onset of diffusely red, inflammatory psoriatic patches, often covering 90% or more of the patient’s total skin surface, and typified by sparse scaling. In contrast, widespread flares of chronic plaque psoriasis, which cause far less physiological stress, may have thicker plaques, as well as variable scaling. Although erythroderma can arise *de novo*, it is most commonly associated with long-standing, active disease.

KEY POINT

Most of the commonly used definitions of disease severity, treatment success, and treatment failure have been developed for use in clinical trials. Such numerical cut-off values, involving easily quantified parameters like BSA affected, are poorly suited to routine clinical practice because they fail to reflect patients’ actual burden of disease. In clinical practice, more patient-centred standards are needed to assess disease burden and treatment success.

Metrics used to determine plaque psoriasis severity

In clinical practice, assessment of the severity of a patient’s plaque psoriasis includes both an objective evaluation of the extent and symptoms of the disease and a subjective evaluation of the impact of psoriasis on the patient’s life. Standardized disease severity measures therefore include symptom- and involvement-based metrics such as BSA and PASI, as well as quality-of-life (QoL) instruments such as the DLQI and the SF-36 (Table 1). Metrics specifically developed for palmoplantar, nail, and scalp psoriasis are less widely used. These are described in the corresponding chapters (below).
Table 1. Metrics used for defining disease severity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures of symptoms and involvement</td>
<td></td>
</tr>
<tr>
<td>BSA (body surface area)<sup>b</sup></td>
<td>Percentage of body surface affected by psoriasis. BSA estimation uses the palm (subject’s flat hand and thumb together, fingers included) as representing around 1% of the total BSA</td>
</tr>
</tbody>
</table>
| PASI (Psoriasis Area and Severity Index)^c | An index of the severity (thickness, redness, scaling) and extent of body surface coverage of psoriasis. Scores range from 0 to 72 (0 — no disease, 72 — maximal disease). The PASI combines assessment of four body areas: head and neck (H), upper limbs (U), trunk (T), and lower limbs (L). The proportion of skin affected by psoriasis in each area is given a numerical score (A) representing the proportion involved:
 • 1: 0–9%
 • 2: 10–29%
 • 3: 30–49%
 • 4: 50–69%
 • 5: 70–89%
 • 6: 90–100%
 Within each area the severity of each of three signs, erythema (E), thickness/induration (I), and desquamation/scaling (S), is assessed on a five-point scale:
 • 0: none
 • 1: mild
 • 2: moderate
 • 3: severe
 • 4: very severe
 For each of the four body areas, the three signs' scores are added and then multiplied by the area score. Each body region's score is then multiplied by the following proportions to reflect its contribution to total body area:
 • neck and head: 0.1
 • upper limbs: 0.2
 • trunk: 0.3
 • lower limbs: 0.4
 Finally, the scores for all four body areas are added to yield the overall PASI score |
| PASI change^a | Change in severity is indicated in terms of percentage change from baseline score. Thus, PASI-75 would indicate a 75% decrease (improvement) in severity as measured using the PASI scale. PASI-125 would indicate an increase (worsening) in severity of 25% greater than baseline |
| Physician’s Global Assessment (static PGA)^b | An assessment of disease severity (clear, almost clear, mild, moderate, severe, very severe) at a particular point in time |
| Dynamic PGA (PGA of change)^a | An assessment of disease response to treatment (worse, unchanged, slight improvement, fair improvement, good improvement, excellent improvement, cleared). This approach to disease response is limited by recall or recording of disease severity previously observed |
Most of the commonly used definitions of disease severity, treatment success, and treatment failure have been developed for use in clinical trials, where definite classifications and cut-offs are required to identify a population for inclusion and to ensure the interpretability of results. Even within this literature, there is no consensus as to how disease severity should be defined. For instance, to define severe psoriasis, some authors may apply the ‘Rule of Tens’, which defines a patient’s disease as severe if any one of several criteria is met (PASI ≥ 10, DLQI ≥ 10 or BSA ≥ 10%). Others may set a single criterion of BSA ≥ 20% (Table 2).

Regardless, such numerical cut-off values are poorly suited to routine clinical practice because they fail to reflect patients’ actual burden of disease. In clinical practice, patient-centred standards are needed to assess disease severity and treatment success, such as the definitions for clinical practice outlined in Table 2. These definitions are used consistently throughout these Guidelines.

Table 2. Terms used in evaluating psoriasis

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions used in clinical trials</th>
<th>Definition for clinical practice, as applied in these Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures of disease severity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild plaque psoriasis</td>
<td>Not commonly defined; the US National Psoriasis Foundation suggests BSA = 5% as an upper limit for mild disease</td>
<td>Disease with a minimal impact on the patient’s QoL; patient can achieve an acceptable level of symptomatic control by routine skin care measures and/or topical therapy</td>
</tr>
<tr>
<td>Moderate plaque psoriasis</td>
<td>The lower limit of moderate to severe psoriasis may be set at PASI = 8 or, in trials of biologics, typically higher</td>
<td>Disease that cannot be, or would not be expected to be, controlled to an acceptable degree by routine skin care measures and/or disease that significantly affects the patient’s QoL, either because of the extent of the disease, the physical discomfort it causes (pain or pruritus), or the location where the disease manifests (e.g., the face, hands, feet, or genitals)</td>
</tr>
</tbody>
</table>
Table 2. Terms used in evaluating psoriasis (cont.)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions used in clinical trials</th>
<th>Definition for clinical practice, as applied in these Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures of disease severity (cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe plaque psoriasis</td>
<td>The Rule of Tens requires PASI ≥ 10 or DLQI ≥ 10 or BSA ≥ 10%<sup>18</sup></td>
<td>Disease that cannot be, or would not be expected to be, satisfactorily controlled by topical therapy and that causes severe degradation of the patient's QoL.</td>
</tr>
<tr>
<td></td>
<td>In some phototherapy trials, BSA ≥ 20% is the lower limit of severe disease<sup>19,20</sup></td>
<td></td>
</tr>
<tr>
<td>Measures of treatment success</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>Absence of disease signs</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>A satisfactory response to therapy, as defined by the patient and/or physician; does not necessarily involve complete clearance</td>
<td></td>
</tr>
<tr>
<td>Remission</td>
<td>Disease control maintained over an extended period, which is sometimes defined operationally by the time between patient-scheduled treatments<sup>21</sup></td>
<td>Suppression of signs and symptoms of psoriasis (not necessarily requiring complete clearance) persisting over a specified period, despite the absence of treatments beyond routine skin care measures</td>
</tr>
<tr>
<td>Measures of treatment failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exacerbation</td>
<td>Any worsening of a patient's psoriasis symptoms</td>
<td></td>
</tr>
<tr>
<td>Flare</td>
<td>An exacerbation occurring while the patient is on therapy, in which the worsening of disease differs from the foregoing disease, either in its morphology (e.g., an erythrodermic or pustular flare in a patient with plaque psoriasis) or in the extent or severity of individual lesions</td>
<td></td>
</tr>
<tr>
<td>Rebound</td>
<td>An exacerbation (classically defined by a PASI-125-level or greater increase in severity or a change in the morphology of the psoriasis) associated with treatment discontinuation. For a rebound to be considered discontinuation-related, its onset should occur within 3 months of treatment cessation<sup>22</sup></td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td>Loss of disease control in a patient previously achieving satisfactory control, classically defined as a 50% loss of the gain achieved by treatment. Therefore, a patient with baseline PASI-20 who achieved PASI-10 with therapy would be considered to relapse at PASI-15<sup>22</sup></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3 - Definitions

References

CHAPTER 4: DELIVERY OF CARE

Canadian Guidelines for the Management of Plaque Psoriasis

Little has been published regarding the state of psoriasis care or the patient experience in Canada specifically. More surveys and observational studies are needed to assess patterns of care in this country — how and where care is delivered, as well as levels of satisfaction, among patients and physicians, with standards of care and treatment options. However, if the state of psoriasis care in Canada is similar to that in other relatively prosperous countries where somewhat more information is available, levels of care and patient satisfaction can be assumed to be far from optimal.

Psoriasis is almost certainly undertreated in Canada. A recent observational study in the United States found that up to 80% of psoriasis patients did not receive care for their condition in a given calendar year, while a survey conducted by the US National Psoriasis Foundation showed that almost 40% of respondents were receiving no treatment at all for their psoriasis at the time of the survey. Worse, the proportion of patients receiving no current therapy did not change significantly with increasing disease severity.

KEY POINT

Psoriasis is almost certainly undertreated in Canada, as it is elsewhere; some severely affected patients may be receiving no therapy at all.

The locus of psoriasis care

Roles of generalist and specialist physicians

Many psoriasis patients can be managed adequately through their regular primary care visits. Educational programs for primary care physicians increase the rate of appropriate referrals of psoriasis patients without significantly increasing the overall referral rate. Such programs help ensure that patients who require specialized care will be adequately treated.

Referrals to a specialist should be considered when disease is extensive, distressing, or unresponsive, or where the patient requires in-depth counselling or education outside the scope of a primary care practice. It may also be appropriate to involve a specialist to confirm a diagnosis, to assess or help establish an appropriate therapeutic regimen, or to help manage more complex cases. Patients who become unresponsive to previously successful treatments or who experience other adverse reactions to topical medications should also be referred (see Chapter 5: Management of mild plaque psoriasis). In addition, a patient's request for a referral to a dermatologist should be respected.

Outpatient care for severe psoriasis

In Canada and elsewhere, psoriasis care has shifted from an inpatient to an outpatient setting in recent years. Hospitalization for treatment with topical tars or steroids, anthralin, or UV light was the standard of care for severe psoriasis until the mid-1970s, when the introduction of new therapies such as UVA with psoralen (PUVA) made outpatient treatment of severe cases more feasible. These innovations coincided with budgetary restrictions and changes to reimbursement policies that have led to a significant drop in hospitalizations for chronic but non-life-threatening conditions across North America and Europe. Although inpatient care for severe psoriasis has been associated with improved quality of life and significantly faster disease clearance compared with outpatient care, designated hospital beds for dermatological care are no longer available, a consequence of changes in the nature of psoriasis treatment and increasing financial pressures.

Psoriasis treatment is now almost exclusively delivered in the outpatient setting. Instead of aiming to achieve complete disease clearance through intensive inpatient care, now the primary goal is to improve the acute or severe manifestations of the
Patient surveys have found treatment non-adherence rates as high as 73% in the general psoriasis population; even among populations where most patients classify their own disease and its impact on their lives as “severe”, up to two in five patients will still fail to follow their prescribed treatment regimen. Such non-adherence can create a vicious cycle leading to poor outcomes. The patient, disappointed or frustrated because the therapy is not working as well as expected, stops following it or does not use it appropriately, further lowering the chances of treatment success.

Poor adherence is thus both a cause and consequence of inadequate treatment efficacy, as the patient perceives it. Successful treatment will rely not only on clinical markers of therapeutic efficacy, but also on understanding and addressing any reasons why the patient might or might not adhere to the prescribed therapy. Clinical decision making in psoriasis must go beyond questions of efficacy — “Which therapy will work for my patient?” — to take into account patient satisfaction and the risk of non-adherence — “Which therapy will my patient work with?”

Patient-centred psoriasis therapy

Measures that address these issues may improve treatment adherence and overall outcomes. The most commonly cited reasons for patient non-adherence with therapy include frustration with medication efficacy, inconvenience of administration, and fear of side effects. It is important for physicians to discuss these issues with patients and determine which of the various treatment options is likely to fit most easily into the patient’s normal routine. In addition, since patients generally increase their adherence to treatment around the time of visits to their healthcare providers, regular and frequent follow-up visits or between-visit telephone or e-mail communications from the physician’s office may help some patients remain on therapy. Patient education, through training programs or involvement in advocacy groups, can also help patients understand the importance of adhering to their prescribed treatment regimen.
Physicians should recognize the ubiquity of treatment non-adherence and take steps to address it in their patients.13 These could include any or all of the following:

- Providing regular follow-up visits after medication prescription, in a patient-specific manner (Ref. 15, LoE 4) \textbf{Grade D}
- Providing specialized education aimed at improving patients’ sense of control over their disease and their knowledge about treatments (e.g., videos, handouts, Internet-based educational programs) (Ref. 16, LoE 4) \textbf{Grade D}
- Encouraging patients to join support groups or foundations to improve their awareness of treatment options and satisfaction with treatment outcomes (Ref. 17, LoE 4) \textbf{Grade D}
- Ensuring effective two-way communication between patient and caregivers regarding the impact of psoriasis on the patient’s mental and physical health (Ref. 2, LoE 4) \textbf{Grade D}

Urgent referral to a dermatologist and, where possible, hospital admission, should be considered for patients with acute unstable psoriasis, generalized erythrodermic psoriasis, or generalized pustular psoriasis (Ref. 3, LoE 4) \textbf{Grade D}

References

Psoriasis is a common skin disorder characterized by erythematous papules and plaques with a silver scale, although other presentations occur. Most cases are classified as mild chronic plaque psoriasis, a condition that typically does not affect general medical health, although its impact on psychosocial health can still be profound.

Fortunately, there is a variety of therapies for mild chronic plaque psoriasis that allow effective treatment in the outpatient setting. Topical agents are the most widely used and can result in good control of mild psoriatic disease, with a low incidence of systemic side effects.1,2 Regardless, there is no lasting cure for mild psoriatic disease, and chronic therapy is often necessary.

The following material reviews the evidence for the use of different topical therapies in patients with mild psoriasis, specifically with involvement of the trunk, limbs, and neck. Treatment of moderate to severe plaque psoriasis — which, by definition, cannot be adequately controlled by the approaches discussed here — will be considered in Chapter 6 (Management of moderate to severe plaque psoriasis). Mild as well as more severe psoriasis affecting the face, hands, genitals, and scalp will be discussed in subsequent chapters.

KEY POINT

Individualized approaches are central to the management of mild psoriasis because there is such wide variation in patients’ presentations, their psychosocial health, and their personal opinions as to what constitutes acceptable treatment. Thus, adequate psoriasis care should look beyond clinical parameters (e.g., body surface area or PASI scores) to maintain a focus on the patient’s health-related quality of life.

Corticosteroids

Corticosteroids are the most widely used agents for the topical treatment of psoriasis and have been the mainstay of therapy for over half a century. They are well tolerated and often efficacious, and they come in a variety of forms, including ointments, creams, gels, lotions, sprays, and solutions.

Considering their widespread use, corticosteroids have been studied in relatively few large-scale, randomized, placebo-controlled trials and even fewer head-to-head comparisons against other therapies. The most comprehensive analysis of topical psoriasis treatment to date was the study by Mason et al.,1 in which all of the topical treatments considered outperformed placebo; the highest-potency steroids were found to be the most efficacious, followed by vitamin D3 analogues.

Despite the demonstrated efficacy of corticosteroids, their use is limited by their potential to produce side effects.3 Long-term use of topical corticosteroids, particularly the most potent of these drugs, may be associated with local cutaneous changes (e.g., atrophy, contact dermatitis, hypertrichosis, folliculitis, hypopigmentation, perioral dermatitis, striae, telangiectases, traumatic purpura).3-6 Hypothalamic-pituitary-adrenal axis suppression can also occur.7

Although the repeated use of topical corticosteroids can result in progressive decrease in their biological action (i.e., tachyphylaxis),8 the clinical significance of this effect is difficult to verify.9 Regardless, Katz et al. reported that ‘pulse-dosing’ of topical corticosteroid treatment may prevent tachyphylaxis and reduce the incidence of adverse effects associated with topical corticosteroid treatment.7 This finding is supported by a report from Lebwohl et al., who found that using fluticasone propionate twice daily for 2 weeks and then once daily for 2 days of the week for 8 weeks did not cause atrophy in steroid-sensitive areas. This tapering regimen maintained control of facial and
intertriginous lesions (see Chapter 9: Management of facial, flexural, and genital psoriasis), although it was associated with gradual loss of control at other sites.10

Vitamin D3 analogues

Topical calcipotriol exerts its therapeutic effect by modulating keratinocyte growth and differentiation and by inhibiting T lymphocyte activity.11 Calcipotriol is currently the only topical vitamin D3 analogue available in Canada.

Various clinical trials have validated the safety and efficacy of calcipotriol12-35 in patients with mild plaque psoriasis. For example, calcipotriol has been compared with Class 2 (potent) corticosteroid ointments and found to be comparable or slightly more effective than these agents.20,36 One double-blind right-left comparison study found that calcipotriol offered a mean PASI reduction of 69% after 6 weeks of treatment, compared with a 61% reduction with 0.1% betamethasone 17-valerate ointment.36 In other studies, vitamin D3 analogues were also more effective than fluocinonide18 and betamethasone dipropionate plus salicylic acid.34 A meta-analysis of randomized placebo-controlled trials involving topical psoriasis treatments1 indicated that vitamin D3 analogues were as effective as all but the most potent corticosteroids. It was also reported that calcipotriol was superior to anthralin in terms of clinical efficacy.37

Although calcipotriol is not as effective as Class 1 topical corticosteroids, it may be better tolerated, with fewer adverse effects. A systematic review by Bruner et al.2 reported that, in comparison with other topical therapies, vitamin D3 analogues were associated with a relatively low rate of adverse events. The most common adverse effect associated with vitamin D3 analogues is a mild irritant contact dermatitis.38 Hypercalcemia has also been reported but is rare with the doses used in clinical settings,39 which should be limited to 5 mg calcipotriol (100 g of calcipotriol cream or ointment) per week.

Retinoids

The topical retinoid tazarotene is one of the more recently approved topical therapies for psoriasis. Like oral retinoids, tazarotene is thought to exert its therapeutic effect by modulating keratinocyte proliferation and differentiation.40 Retinoids also act to clear the inflammatory infiltrate in the psoriatic plaque,41 although it has not been established whether their anti-inflammatory effects are an indirect consequence of their actions on keratinocytes.

When used as monotherapy, tazarotene can be effective at achieving remission of psoriatic plaques.42-48 One placebo-controlled trial of daily 0.1% or 0.05% tazarotene gel found that this agent reduced plaque elevation, scaling, and erythema over a period of 1–12 weeks. The therapeutic effect of tazarotene, judged by severity at target lesions, was maintained for 12 weeks after cessation of treatment.49 Similar results have been reported by other investigators.50 Another study found that tazarotene had equal efficacy and induced a longer remission period when compared with a Class 2 corticosteroid, 0.05% fluocinonide.45

Tazarotene monotherapy is associated with a high incidence of irritation at the site of application. This dose-dependent effect, which can manifest as itching, burning, and erythema,49 may restrict the use of tazarotene in some patients. In a systematic review of studies, tazarotene had a slightly higher incidence of adverse effects than corticosteroids or vitamin D3 analogues, but less than anthralin or coal tar.2

Anthralin and tars

There are very few well-designed studies to determine the efficacy of either tar or anthralin. The study by Mason et al.1 included data from five head-to-head trials of vitamin D3 analogues versus anthralin and reported that anthralin showed inferior efficacy. Several attempts have been made to minimize the stain and irritation associated with anthralin in order to promote treatment adherence and thereby increase efficacy through the use of different regimens, formulations, and adjuncts.31-33 Indeed, a recent randomized controlled study54 reported that once-daily short-contact anthralin was as effective as calcipotriol in an outpatient setting. Commercial formulations of anthralin are not currently available in Canada.

Coal tar is the main formulation of tar therapy employed for patients with mild plaque psoriasis. One recent study reported that coal tar was significantly less effective than betamethasone valerate (mean PASI reduction 38% versus 69%).55
Randomized controlled trials have reported that coal tar and calcipotriol showed comparable clinical efficacy and similar relapse rates. However, calcipotriol has a faster onset of action and is more acceptable to patients on cosmetic grounds.\(^{56,57}\) Calcipotriol is also better tolerated than tar, which can cause acne, folliculitis, phototoxicity, and local irritation.\(^{2,56,57}\) Coal tar, formulated in lotions and shampoos, is commonly used to treat scalp psoriasis (see Chapter 11: Management of scalp psoriasis); other preparations are used for plaque-type psoriasis of the hands and feet (see Chapter 12: Management of palmoplantar psoriasis).

Tars, like anthralin, are associated with significant adverse effects,\(^2\) including staining and irritation, and their use has declined since the introduction of topical products that are typically more acceptable to patients. Regardless, these agents can still play a role in psoriasis treatment, provided the patient uses them as prescribed.

Combination therapy

In general, combination therapy is more efficacious and can result in reduced incidence of adverse effects when compared with monotherapy alone. Several studies have examined the concomitant or sequential use of topical corticosteroids with vitamin D3 analogues for the treatment of patients and demonstrated this combination was safe,\(^{38}\) effective, and reduced the irritation associated with either agent alone.\(^{26,28,35,59-65}\) Thus, in one study, calcipotriol was applied in the morning and halobetasol ointment in the evening, resulting in a reduced overall severity of psoriasis versus monotherapy.\(^{66}\) Another study used a similar regimen for 2 weeks and then switched patients to pulse therapy consisting of halobetasol ointment twice daily on weekends and calcipotriol ointment twice daily on weekdays.\(^{67}\) This approach was superior to either of the two agents when pulsed with placebo.

Studies of a fixed-dose preparation of calcipotriol and betamethasone dipropionate have confirmed the efficacy of this vitamin D3 analogue/corticosteroid combination.\(^{26,61,64,65,68,69}\) For instance, one randomized study examined the use of calcipotriol/betamethasone dipropionate for 4 weeks followed by maintenance with calcipotriol for 8 weeks, comparing this treatment with calcipotriol alone for 12 weeks. Clinical endpoints were not significantly different when comparing the two groups at the 12-week time point, but the combination therapy group experienced a faster response to therapy, with superior clinical parameters at the 2-week and 4-week time points.\(^{70}\) The calcipotriol and betamethasone dipropionate combination is available premixed.

Calcipotriol/betamethasone dipropionate is more effective than calcipotriol or betamethasone alone when used as first-line therapy for mild plaque psoriasis.\(^{71}\) However, use of this combination strategy must also take into account the adverse effects associated with potent corticosteroids, particularly in patients with greater affected body surface area (e.g., > 3–5%), who would receive a higher effective dose of steroids.

Corticosteroid/topical retinoid combination regimens appear to confer enhanced therapeutic effect, with a reduction in the local irritation produced by the retinoids.\(^{43,45}\) In one study, treatment with tazarotene gel combined with a mid- or high-potency corticosteroid caused a significant reduction in scaling, erythema, and overall lesion severity and a decrease in the incidence of adverse events versus tazarotene plus low-potency corticosteroid or plus placebo.\(^{45}\) Part of the success of this particular combination may result from the rapid onset of action of corticosteroids compared with tazarotene and the fact that tazarotene-induced irritation is reduced by the anti-inflammatory effect of a steroid. Further, tazarotene increases epidermal thickness, and the use of tazarotene in conjunction with topical corticosteroids reduces the degree of corticosteroid-induced atrophy by as much as 37%.\(^{72}\) Another trial comparing combination treatment for psoriasis with calcipotriol ointment and tazarotene gel versus clobetasol ointment found no difference in efficacy between the regimens.\(^{73}\)

Finally, as a result of its ability to reduce scale and soften lesions, salicylic acid can enhance steroid efficacy by increasing penetration.\(^{74}\) This agent promotes the desquamation of corneocytes from psoriatic plaques\(^{75}\) and the absorption of corticosteroids in human skin explants.\(^{76}\) Salicylic acid is available in combination with corticosteroids such as betamethasone dipropionate and diflucortolone valerate.
Other approaches

Non-medicinal topical treatments
Emollients, moisturizers, ointments, and similar, non-medicinal topical treatments are widely used, but their efficacy has not been thoroughly investigated, and there is little direct evidence that they are beneficial, either in mild or in more severe psoriasis. However, one study established that the use of a water-in-oil cream or lotion in combination with betamethasone dipropionate cream can increase the efficacy of steroid treatment and allow patients to achieve control with lower corticosteroid doses. The steroid-sparing effects of such emollients, as well as their still-unproved benefits as monotherapy, have been attributed to their ability to restore normal hydration and water barrier function to the epidermal layer of the psoriatic plaque.

Regardless of their efficacy or their mechanism of action, moisturizers and related topicals are unquestionably central to the routine skin care that dermatologists prescribe and that individuals with psoriasis commonly use, even when not under a physician’s care.

The presumed benefit of these agents raises a common methodological issue in the literature on mild psoriasis, since the more rigorous studies typically employ the vehicle, or some other bland emollient, as the comparator (placebo) treatment. In some cases, both the experimental arm and the placebo arm of the trial show significant improvement relative to the patients’ condition at baseline, although there is no significant difference between treatment arms. In such cases, it remains possible that the experimental treatment (e.g., plant products such as Aloe vera gel or kukui nut oil) is indeed superior to leaving the disease untreated, although the emollient properties of the treatment may fully explain any such benefit.

For certain other topical treatments that have been explored for use in mild psoriasis, a relatively slender evidence base supports the claim of benefits over and above those of a simple emollient. This is the case for fish oil–based topicals and other preparations containing omega-3 fatty acids. These fatty acids are proposed to be anti-inflammatory, due to their effects on eicosanoid lipid metabolism. However, the benefits of topical or dietary fatty acid supplementation on psoriasis severity are equivocal, and a clear dose-dependent effect has not been established for any such treatment (reviewed in Mayser et al.). Fatty acid infusion has been explored as a potential treatment for chronic moderate to severe plaque psoriasis.

Intralesional corticosteroid injection
Although the practice of injecting psoriatic plaques with triamcinolone or similar corticosteroids appears to be maintained in the dermatologist’s toolkit (particularly for use in treating a small number of isolated plaques that fail to respond to topical therapy), there is little published information on this approach. This treatment carries a risk of atrophy and depigmentation.

Measures of success
Various assessment tools have been developed to quantify the response to treatment and compare the efficacy of topical regimens. These scales can include physician-assessed response (PASI, OLS, PGA, and target lesion assessment), patient-assessed response (DLQI, DQOLS, SF-36, VAS, PSA Scale), or composite tools. However, there are no large-scale randomized controlled studies to evaluate the comparative utility of these different scales during routine clinical visits or the optimal frequency of assessment.

The physical manifestations of psoriasis can have a profound impact on psychosocial health (see Chapter 13: Social and psychological aspects of psoriasis). Fortunately, many topical treatments, including steroids, vitamin D3 analogues, retinoids, anthralin, and tar, are superior to placebo and can help mitigate these clinical endpoints of psoriasis. However, each treatment is also associated with a distinct profile of factors (e.g., convenience, tolerability, adverse effects) that can have a negative effect on health-related quality of life, interfering with treatment adherence and thereby limiting real-world efficacy.
Because there is wide variation in patients’ psoriatic presentations, personal values, psychosocial health, and expectations regarding the acceptable implications of therapy, individualized approaches are indicated in choosing specific treatments. As has been argued elsewhere, adequate psoriasis care should look beyond clinical parameters (e.g., body surface area or PASI score) to maintain a focus on the patient’s health-related quality of life. A good physician–patient relationship, in which the patient’s expectations and the advantages and disadvantages of each therapy are reviewed and the patient participates in the choice of therapy, is critical to achieve treatment success and overall patient satisfaction (see Chapter 13: Social and psychological aspects of psoriasis).

Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical corticosteroids may be used as first-line therapies for patients with mild plaque psoriasis (Refs. 1, 2, LoE 1++)</td>
<td>Grade A</td>
</tr>
<tr>
<td>Other appropriate first-line options include topical calcipotriol (Refs. 1, 2, 16, LoE 1++) and calcipotriol/betamethasone dipropionate in combination (Ref. 69, LoE 1++)</td>
<td>Grade A</td>
</tr>
<tr>
<td>For appropriate patients, tazarotene may be used, either alone or in combination with topical corticosteroids (Refs. 42, 49, LoE 1+)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Non-medicinal emollients, including creams, ointments, and lotions, should be used in combination with the above agents to potentiate their effects (Ref. 77) and to help restore the barrier function of the skin (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Because many standard topical therapies for the treatment of mild chronic plaque psoriasis are superior to placebo, including corticosteroids, calcipotriol, tazarotene, anthralin, tars, and various combination products, individualized approaches are indicated in choosing specific treatments and may supersede the above recommendations (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Physicians should consider the vehicle used in topical agents and select formulations that will be acceptable to the patient (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Clinical endpoints of treatment success should rely on patient satisfaction and health-related quality of life in addition to traditional objective indicators of disease response (LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>
Recommendations (cont.)

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with mild, uncomplicated plaque psoriasis who respond to first- or second-line therapy can be safely managed by their primary care providers.</td>
<td>Grade D</td>
</tr>
</tbody>
</table>

Dermatologic referral may be indicated:
- For those with more severe disease, as judged by the extent of the disease or the distress it causes the patient
- For patients requiring in-depth counselling or education outside the scope of primary care practice
- To assess an uncertain diagnosis
- To assess or help establish an appropriate therapeutic regimen
- Upon request by a patient
- For patients failing to respond to therapy or becoming unresponsive to a previously successful treatment
- For patients with involvement of the face, scalp, hands/feet, or intertriginous areas
- For patients with complicated psoriasis (pustular, guttate, erythrodermic) or concomitant psoriatic arthritis (LoE 4 for all) | Grade D |

For patients with uncontrolled mild plaque psoriasis, physicians should follow up regularly to address issues of adherence, monitor for clinical response, and consider adjustments in therapy. Those undergoing stable maintenance therapy should be followed up each 3–6 months (LoE 4) | Grade D |
References

14. Pinheiro N. Comparative effects of calcipotriol ointment (50 micro g/g) and 5% coal tar/2% allantoin/0.5% hydrocortisone cream in treating plaque psoriasis. Br J Clin Pract 1997;51:16–9.

Definitions of moderate to severe psoriasis in the clinical literature are varied and contradictory. Commonly, moderate psoriasis is distinguished from milder forms of the disease on the basis of scores on one or more clinical metrics, such as the Psoriasis Area and Severity Index (PASI), the percent of body surface area (BSA) affected, or the Dermatological Life Quality Index (DLQI). While numerical cut-offs are necessary in clinical trial design, they have little value in daily practice, as discussed in Chapter 3 (Definitions). For the purposes of these Guidelines, therefore, patients are considered to have moderate to severe psoriasis if they cannot achieve, or would not be expected to achieve, adequate control using topical agents, with adequacy defined by the patient’s own perception of the disease and its burdens.

Clinical goals
Appropriate clinical goals for managing plaque psoriasis are also a matter of dispute. Some years ago, it was prominently argued that disease clearance represents an unrealistic standard for success in treating this lifelong, chronic condition. Amelioration, i.e., short-term improvement and limited long-term disease control, was suggested as a more appropriate goal in the real world of a dermatology clinic, where patient histories are more heterogeneous than in clinical trials and where treatment adherence is far from optimal.1

For some patients with moderate to severe psoriasis, amelioration may be an adequate treatment goal, and indeed, many therapeutic tools are available that can be used, even as monotherapy, to achieve some degree of control. There is abundant evidence that each of the therapies listed in Table 1 can be used to this end, as documented by at least a 50–75% reduction in PASI score in a significant proportion of treated patients.

However, the literature also shows that clearance can be achieved using phototherapy and that this goal has become all the more realistic with the introduction of biologic agents in recent years. Indeed, some patients on biologics experience periods essentially free of psoriatic symptoms.2 With these newer tools in hand, it has been possible to document the quality-of-life benefits associated with dramatic disease suppression (e.g., achieving a score of < 3 on the 72-point PASI scale), as well as the further, significant benefits of achieving a PASI score of 0.3,4 Hence, full clearance represents an achievable and appropriate goal in treating many patients.

Although many antipsoriatic therapies are ameliorative, fewer of them can be used to achieve complete or nearly complete clearance of symptoms. This more ambitious clinical goal is also more difficult to document, since only rarely (and only in the most recent publications) is a 100% reduction in PASI score included as a clinical endpoint. However, some papers do cite final PASI scores and present the number of patients achieving a specific, low PASI score (e.g., 0–4). Others report a 90% reduction in PASI, which, for the great majority of patients, will necessarily correspond to a final PASI score in this same low range. Still other reports cite rates of “complete clearance”, “complete remission”, or “minimal residual activity”. For instance, in phototherapy studies, it is common to provide as many UV sessions as the patient requires to reach a pre-specified treatment target, such as clearance. In such studies, the phototherapy treatments are evaluated not only for their ability to meet such a target, but also to meet it rapidly, with minimal UV exposure.

KEY POINT

For some patients with moderate to severe psoriasis, amelioration may be an adequate treatment goal, and many therapeutic tools are available that can be used, even as monotherapy, to achieve some degree of control (see Table 1). However, the literature also shows that clearance is feasible, particularly with the introduction of biologic agents in recent years. Hence, full clearance represents an appropriate goal in treating many patients (see Table 2).
Safety, efficacy, and tolerability of the various therapeutic options
The discussion below centres on the issues that could limit use of each of the therapeutic options described in Table 1, as well as on the efficacy of these options when used as monotherapy. Although all of these approaches ameliorate plaque psoriasis in patients with moderate to severe disease, their efficacy in the real world may be compromised by poor adherence.5 It is therefore necessary to select those options that are likely to be both safe for and acceptable to the individual patient.

While not all of the ameliorative therapies shown in Table 1 induce full clearance of psoriatic symptoms, some may be better suited to this purpose when used in combination regimens. Table 2 presents monotherapies and combination regimens that have been used successfully to achieve complete or nearly complete clearance in a significant proportion of patients.

Note that this chapter specifically addresses chronic plaque psoriasis affecting the trunk and extremities; the reader should consult other chapters of these Guidelines for recommendations on managing psoriasis of the palms and soles; the scalp; nails; and facial, flexural, and genital areas. However, patients whose disease affects both the trunk and some of these other areas may benefit from the systemic and phototherapeutic regimens considered here.

Topical treatment
For patients with moderate to severe psoriasis, the topical agents used in mild psoriasis (see Chapter 5: Management of mild plaque psoriasis) remain useful adjuncts. Because it is assumed that the patient’s condition is intractable with strictly topical therapy, these agents are not discussed below unless they are to be used in combination regimens with systemic or phototherapies.

One exception is a two-compound calcipotriol and betamethasone ointment, which has been examined in randomized controlled trials in patients with relatively severe disease, including those with baseline PASI score averaging 22.6. More than half of those treated experienced a 75% reduction in PASI score within 4 weeks.6

This combination ointment is well tolerated but should not be used on facial, flexural, and genital areas (see Chapter 9: Management of facial, flexural, and genital psoriasis). If this ointment is used in quantities exceeding the recommended limit of 5 mg calcipotriol (100 g ointment) per week, the patient’s serum calcium level should be monitored regularly. Overdose carries potential risk of systemic toxicity, including hypothalamic-pituitary-adrenal axis suppression, associated with betamethasone, and hypercalcemia, associated with calcipotriol.

Systemic therapy with traditional and biologic agents
Traditional systemic agents remain mainstays of treatment for plaque psoriasis. As discussed below, methotrexate and cyclosporine can offer effective control in many cases, but their use is limited by toxicity; acitretin carries less risk of specific end-organ toxicity, but it is teratogenic and therefore inappropriate for many female patients of childbearing age. All three of these agents also have the potential for interactions with other drugs (Table 3), which may limit their use in certain patients.

The biologic agents currently available for psoriasis represent significant recent additions to the dermatologist’s toolkit. Although their record of use in psoriasis remains shorter than that of other treatments, their safety records all extend for multiple years of pre- and post-marketing use. In the case of the TNF-α antagonists, the safety record for psoriasis is supported by a longer history of use in other indications, such as rheumatoid or psoriatic arthritis. As described below, the various biologics have been linked to specific adverse events, but none is associated with common safety concerns, such as the end-organ toxicity observed in cyclosporine and methotrexate or the risk of squamous cell carcinoma (SCC) associated with PUVA.

There is no clinical reason, therefore, to reserve the biologics for second-line use.7 In many cases, the safety of these agents, as well their relatively good tolerability and acceptability to patients, represent deciding factors for their use.
Systemic agents

Acitretin
Acitretin is the only antipsoriatic retinoid drug available for systemic use in Canada. Retinoids as a class are teratogenic, placing severe constraints on the use of acitretin in women of childbearing age and potential (see Table 1). Common side effects include mucocutaneous dryness (often obvious as chapped lips) and elevation of triglycerides. Rarer events, including skeletal abnormalities such as diffuse idiopathic skeletal hyperostosis (DISH) syndrome, remain a concern, but their incidence appears to be low in individuals receiving the standard doses. Low-dose acitretin (25 mg/day) is safer and better tolerated than higher-dose (50 mg/day) treatment.

There is little evidence for the benefit of acitretin monotherapy in plaque psoriasis, but the combination of acitretin with topical calcipotriol has been reported to increase rates of clearance, and the combination of acitretin with biologic therapy has also been explored. Use of acitretin in combination with phototherapies is discussed below.

Cyclosporine
Cyclosporine is a calcineurin inhibitor used as an immunomodulator in a variety of indications, including chronic plaque psoriasis. Although it can be effective in long-term, continuous use, cyclosporine is associated with cumulative renal toxicity, causing loss of renal function that may be reversible following discontinuation. In addition to its adverse effects on the kidney, this drug can cause hypertension and hypertriglyceridermia, particularly in patients with prior elevation of diastolic blood pressure or triglycerides. The risk of SCC and other forms of non-melanoma skin cancer also rises with increasing time on cyclosporine.

It has been proposed that continuous cyclosporine, for periods up to 2 years, is appropriate for a subset of patients. Annual monitoring of glomerular filtration rate is recommended when cyclosporine is provided in this manner, in addition to routine, monthly assessments of blood pressure and creatinine clearance, with more frequent measurements during the initial 6 weeks of treatment. However, cyclosporine should normally be reserved for intermittent use in periods up to 12 weeks, and kidney function, blood pressure, and triglyceride levels should be carefully monitored before, during, and after treatment. When used in this intermittent fashion, a course of cyclosporine treatment can induce an average decrease of > 75% in psoriasis severity, an effect that is consistent over at least three treatment cycles.

In isolated cases, sudden discontinuation of cyclosporine has led to a dramatic rebound of psoriasis.

Methotrexate
Methotrexate is an inhibitor of folate biosynthesis and therefore impairs DNA replication. It was originally used in psoriasis for its cytostatic properties, but it is now recognized to be directly anti-inflammatory because of its effects on T cell gene expression patterns. Some but not all of these effects are related to folate depletion, consistent with clinical evidence that folate supplementation can diminish the efficacy of methotrexate treatment in psoriasis. Folate supplementation is commonly justified on the basis of a reduced risk of toxic effects of methotrexate. A recent study in rheumatoid arthritis (RA) raised some doubt about the efficacy of folate treatment for preventing pancytopenia, a rare but potentially fatal side effect of low-dose methotrexate. However, this study confirmed that folate supplementation significantly reduced the incidence of liver toxicity and thereby prevented treatment discontinuation.

Although the use of folate remains controversial in dermatological practice, there appears to be little doubt that it improves the tolerability of methotrexate treatment and may therefore increase treatment adherence. Hence, this practice may be justified by greater real-world efficacy and a wider therapeutic window, even if folate partially inhibits the therapeutic action of methotrexate.

Compared with cyclosporine, methotrexate has a more modest and inconsistent effect on
psoriasis severity over a 12-week period, but it is valuable because it can be used continuously over a period of years or decades, with durable benefits. The predominant safety issue with methotrexate is cumulative liver toxicity, which was shown in a Canadian study to be severe in nearly one-fourth of patients receiving the drug over the course of 1–11 years. Patients with comorbid diabetes were at particularly high risk of severe liver fibrosis and cirrhosis.

Guidelines have traditionally recommended routine pre-treatment liver biopsies and subsequent biopsies at intervals based on cumulative methotrexate consumption, e.g., every time a cumulative dose of 1.5 g of the drug is taken. However, pre-treatment biopsies may not be practical or appropriate in all cases.

In addition to its effects on the liver, methotrexate can lead to pancytopenia and pulmonary toxicity, and it has also been associated with a small but significant increase in lymphoma and acute myelosuppression, a potentially fatal outcome. In isolated cases, methotrexate treatment has led to Epstein-Barr virus-associated lymphoproliferative disease or to an osteoporotic condition that remits upon withdrawal of methotrexate. Methotrexate frequently causes nausea that can be severe enough to lead to treatment discontinuation. It is also an abortifacient and teratogen and is therefore strictly contraindicated during pregnancy; men as well as women should be counselled to use effective contraception while being treated with methotrexate. Men should continue to use contraception for 3 months, and women should do so for at least one ovulatory cycle after discontinuing methotrexate (see Chapter 7: Special populations and circumstances).

Other systemic agents

Several agents are occasionally used for recalcitrant moderate to severe plaque psoriasis, although they are not approved in Canada for this indication. These include mycophenolate mofetil and hydroxyurea. Several small studies and case reports indicate that these agents can be effective over a course of 12 weeks, but comparative studies provide little evidence that they offer superior efficacy, relative to standard systemic treatments such as methotrexate and cyclosporine. Mycophenolate mofetil is an immunosuppressive agent commonly used in transplant patients. In these patients, the drug can cause neutropenia and a possible increased risk of lymphoma and opportunistic infections. Hydroxyurea, an antineoplastic agent, can lead to bone marrow suppression as well as mucocutaneous effects, such as reversible hyperpigmentation, localized tenderness, and erythema.

Biologic agents targeting TNF-α

The biologic agents adalimumab, etanercept, and infliximab share a common mechanism of action and offer the prospect of more rapid disease control than is commonly seen with the other biologics. They also share a number of overlapping safety concerns, including serious infections (notably sepsis, new-onset or reactivated tuberculosis [TB], and certain viral infections), autoimmune conditions (lupus and demyelinating disorders), and malignancies such as lymphoma.

Despite the difficulty of establishing causality, these rare events may represent class effects for the TNF-α antagonists. However, it should not be assumed that the three TNF inhibitors are identical in their safety profiles. The risk of granulomatous infections, such as TB, is well established to vary among the three agents, with the lowest risk seen in patients treated with etanercept and higher risk in infliximab-treated patients. The risk of reactivated or new-onset TB associated with adalimumab appears to be intermediate between those of etanercept and infliximab, although the data on this point remain equivocal.

Adalimumab

Adalimumab offers effective control of plaque psoriasis, with complete or nearly complete clearance in some cases. For some patients, significant improvement is evident within 1 week of initiating treatment. In one trial, approximately one-fifth of patients achieved a 100% reduction of PASI score within 16 weeks. Clinical benefits, at the PASI-75 level or better, were maintained for at least 1 year with continuous therapy, although approximately
10% of initially responsive patients were judged to have lost their adequate response in the course of further therapy.50

In a direct comparison with methotrexate and placebo, adalimumab proved to have higher rates of 75%, 90%, and 100% PASI improvement and a lower rate of adverse events and treatment discontinuation than methotrexate,2 as well as a significantly greater beneficial effect on patient quality of life.4

The safety record of adalimumab, based largely on use in rheumatoid and psoriatic arthritis, has revealed few alarming adverse events, although this may reflect its shorter history of use compared to the other TNF-α antagonists. There is little evidence to date that adalimumab increases the risk of lymphoma, demyelinating disorders, or opportunistic infections beyond the background rate seen in the psoriatic population. However, adalimumab is associated with reactivation of latent TB, and risk of TB can be minimized but not eliminated altogether by screening and prophylaxis.31 As with the other biologics of this class, adalimumab may also activate pre-existing malignant melanoma.52

In addition, like the other TNF-α antagonists (etanercept and infliximab, discussed below), adalimumab can lead in isolated cases to flares of pustular psoriasis.53 This reaction has typically been seen in individuals undergoing treatment for non-dermatological conditions such as rheumatoid arthritis, but it is sometimes seen in patients with a personal history of pustular psoriasis54 (see Chapter 8: Exacerbation and flare of psoriasis).

Adalimumab is administered subcutaneously, usually at a dose of 40 mg every other week, following a loading dose of 80 mg2,50 although more frequent dosing has been explored.49

Etanercept

Etanercept, a fusion protein targeting TNF-α signalling, is indicated for rheumatoid and psoriatic arthritis, as well as for moderate to severe psoriasis.

Etanercept is generally initiated at a dose of 50 mg BIW, which is stepped down to 25 mg BIW after the first 12 weeks of treatment.55 This dosing is sufficient to achieve a 75% reduction in PASI score after 24 weeks of therapy in more than half of patients and a ≥ 90% reduction in one-fifth of patients.56 However, the best evidence for clearance or near clearance of symptoms comes from patients receiving a constant dose of 50 mg BIW.57 This dosing has not been associated with any additional safety concerns, and it allows for approximately one-third of patients to achieve a 90% reduction in PASI score by 36 weeks of treatment.57

Weaker responders (≤ 50% PASI reduction after 24 weeks) need not discontinue, as they may experience continued improvement from maintaining etanercept for > 1 year.58 For patients with an inadequate response at 24 weeks, the physician should consider maintaining constant 50 mg BIW dosing, rather than stepping the dose down.57

Some patients appear to experience a partial loss of control between 36 and 96 weeks of treatment, even when maintained on the higher dose of etanercept.57

Serious safety concerns shared with the other TNF-α antagonists include the risk of serious infections and of reactivating latent TB,59 malignant melanomas,52 or squamous cell carcinomas.60

In isolated cases, etanercept treatment has induced guttate flares in patients being treated for plaque psoriasis.61 This may be a class effect for the TNF inhibitors, since a similar response has also been reported in patients receiving adalimumab or infliximab for non-dermatological conditions.51 With these exceptions, etanercept is generally well tolerated.

Infliximab

The TNF-α antagonist infliximab offers rapid and thorough suppression of psoriatic symptoms. Infliximab is approved for use in chronic moderate to severe psoriasis; it has been available longer than adalimumab and has been used more extensively to treat acute flares. When used in patients with particularly severe psoriasis (baseline PASI score up to 48), this agent was generally well tolerated for periods up to 2 years.62
Infliximab is administered by intravenous infusion; standard treatment requires three infusions (5 mg/kg) over a 6-week induction period, followed by regular infusions every 8 weeks. Nearly half of infliximab-treated patients experience a ≥ 90% decline in PASI score within 10 weeks of the initial treatment, which can be associated with dramatic improvements in quality of life as assessed by a score of 0 on the Dermatological Life Quality Index. However, at least half of responsive patients experience a decline in efficacy during the second year of continuous treatment. It has been suggested that concomitant therapy with methotrexate plus folate is useful for patients developing resistance to infliximab; this combination regimen has been explored for patients with psoriatic arthritis and, more systematically, for patients with rheumatoid arthritis.

Infliximab is associated with a risk of infusion reactions, as well as other adverse events that have been reported for the other TNF inhibitors, such as serious infections and reactivated TB, lupus, demyelinating disorders, thrombocytopenia, and malignancies. In rare instances, infliximab has been associated with cholecystitis and autoimmune hepatitis, which may be a class effect for TNF inhibitors. The potential for hepatitis B reactivation with infliximab and other TNF inhibitors is discussed in Chapter 7 (Special populations and circumstances).

The incidence of serious adverse events leading to discontinuation was reported to be approximately 25% in one small study of patients receiving regular infliximab infusions for up to 21 months. By contrast, infliximab discontinuation due to adverse events occurred in only 9% of patients in a 50-week phase 3 trial.

Biologic agents targeting T cells
Alefacept is currently the only biologic agent available in Canada that interacts directly with T cell surface proteins.

Alefacept acts in part by triggering the death of pathogenic T lymphocytes. It was the first biologic to be approved for moderate to severe psoriasis and has accumulated an extensive and reassuring safety record. There is no evidence in humans that alefacept increases the incidence of infections, cancers, or any other serious adverse outcome beyond background levels. The sole exception is a laboratory finding, depletion of CD4 T lymphocytes; the patient’s CD4 cell counts must therefore be monitored and treatment withheld when this cell population declines below 250/μL. In case of persistent decline in CD4 count, alefacept should be discontinued.

Alefacept is unique among the biologics in that it is intended for intermittent rather than long-term continuous use. A 12-week course of alefacept allows for a 50–75% reduction in PASI score in approximately one-fourth of patients, and this improvement may be maintained in some patients for periods beyond 1 year. Courses may be repeated when the loss of control becomes unacceptable, up to twice per year. While some patients benefit from repeated courses of alefacept, the number of such responders is difficult to estimate.

Although alefacept is described as a remittive therapy, remission with this treatment is relative, not absolute; there is little evidence that alefacept monotherapy can be used to achieve full clearance of symptoms and indeed, it appears that this biologic is often used in combination regimens. However, in combination with narrowband (NB) UVB treatment, alefacept permits a reduction in PASI score to 3 or lower in 43% of patients within 12 weeks. This combination significantly reduces the number of UVB treatments that would otherwise be necessary to achieve clearance.

Phototherapy and photochemotherapy
Use of UV phototherapy was an outgrowth of traditional climate and balneotherapy, in which psoriasis patients were advised to vacation in sunny environments such as saltwater spas. The effects of UV therapies on cutaneous inflammatory cell populations are well established. Both narrowband UVB and PUVA cause a rapid depletion of cell populations that are implicated in psoriasis pathogenesis, including dermal and epidermal lymphocytes, macrophages, and dendritic cells.
In both of these common forms of phototherapy, the dose of UV light must be carefully titrated, based initially on the patient’s complexion and likeliness to burn or to tan. Treatment is offered on a regular schedule until patients achieve the desired degree of symptomatic improvement. The requirement to appear one to four times per week at a phototherapy clinic can be burdensome for some patients and may limit the efficacy of this approach if clearance cannot be achieved quickly.

Acute safety issues with phototherapy are rare but can include treatment-related effects such as erythema or blistering. However, because PUVA and perhaps also UVB therapy pose a risk of carcinogenesis, it is important to limit patients’ cumulative exposure to therapeutic UV light.

PUVA monotherapy

PUVA refers to a variety of therapeutic techniques that use 5- or 8-methoxypsoralen to sensitize cells to the effects of longer-wavelength UV light (320–400 nm). Common variations allow for psoralen to be administered topically, either by bathing in a psoralen solution, by painting the compound on affected skin, or orally. Oral psoralens can cause nausea but are generally well tolerated. PUVA is generally highly effective, commonly leading to clearance within 4–6 weeks at four treatment sessions per week or over a longer period with less frequent sessions.

PUVA leads to skin aging and freckling and has been associated with non-melanoma skin cancers, including SCC and, less frequently, basal cell carcinomas. This heightened risk appears to correlate with the patient’s total cumulative dose, increasing dramatically in individuals who have undergone more than 200 treatments, and it persists for up to 15 years after PUVA treatment is discontinued.

One large prospective study in the US has identified an additional risk of melanoma with increasing cumulative UVA doses. In a Scandinavian cohort, however, no such effect on melanoma risk could be detected, although the study confirmed the excess of non-melanoma skin cancers, relative to background incidence. The basis for this difference in outcome is not known. Regardless, to minimize the risk of cancer, lifetime exposure should be capped if possible at 200 PUVA sessions. Patients with a history of PUVA use may be inappropriate for subsequent treatment with immunomodulatory agents, such as cyclosporine, which could allow the emergence of SCC and other non-melanoma skin cancers.

UVB monotherapy

When used without concomitant therapy, NB-UVB treatment can also lead to full clearance of psoriatic symptoms, although efficacy within 3 months depends in part on the frequency of treatment. For instance, it has been reported that thrice-weekly NB-UVB treatment is as effective as twice-weekly PUVA, whereas twice-weekly NB-UVB treatment is less likely to lead to clearance.

Despite the extensive history of this treatment, the long-term safety of UVB therapy remains a matter of speculation. Unlike PUVA, it has not been established whether UVB is carcinogenic in humans, although preclinical data suggest that NB-UVB could be somewhat more carcinogenic, on a dose-by-dose basis, than natural exposure to the sun. There are no immediate prospects of UVB trials with sufficient power to quantify this risk; in the absence of such evidence, it is prudent to use appropriate combination therapies when possible to reduce exposure to NB-UVB radiation.

UV combination regimens

A wide variety of photochemotherapeutic regimens have been studied, and many offer clear advantages over the corresponding phototherapy. The best studied is the addition of retinoids, typically acitretin, to PUVA or UVB therapy (RePUVA or ReUVB). RePUVA can be used to achieve clearance with up to a twofold reduction in total UV exposure, compared with PUVA alone. Relative to phototherapy alone, combined treatment with acitretin can significantly reduce exposure to UVB.

Whereas acitretin is inappropriate for many female patients because of its teratogenicity and long elimination half-time (see Table 1), topical agents such as calcipotriol and...
tazarotene can be combined more freely with UV treatment. Both of these topical agents, used daily\(^98,99\) in combination with NB-UVB, can significantly reduce the UV dose needed to achieve clearance. In a study of calcipotriol used daily in combination with twice-weekly broadband UVB, this combination allowed for 60% of patients to achieve clearance within 12 weeks. This result was similar to that seen in a comparator group who received thrice-weekly UVB plus placebo, but control was achieved with significantly lower ultraviolet exposure.\(^{100}\)

One older photochemotherapeutic regimen that appears no longer to be used widely in Canada is the so-called Goeckerman protocol. This procedure requires multiple, day-long treatment sessions with crude coal tar and UVB irradiation. Because of the inconvenience and time involved, the procedure is appropriate only for strongly motivated patients, and it requires a specialized treatment centre that can accommodate them. Goeckerman therapy is commonly combined with other approaches (‘modified Goeckerman treatment’), making it difficult to assess the relative contribution of the different components.\(^{101}\) However, recent findings confirm that even those patients treated with NB-UVB plus tar alone can achieve complete or nearly complete clearance, with durable benefits over a period of months.

Numerous other therapeutics, including methotrexate\(^{102}\) and biologics such as alefacept,\(^77\) can be used in conjunction with UVB or PUVA to achieve a high degree of symptomatic control while limiting the patient’s exposure to UV radiation.

Achieving clearance

Table 2 describes monotherapies and combination regimens that may be used to achieve complete or nearly complete clearance of psoriatic symptoms, along with the strength of evidence for each in this regard. The recommended regimens may be suitable for only a subset of patients, as a result of individual medical history, lifestyle, or other constraints. It is suggested that patients explore all appropriate choices to identify ones that can be used over the long term to achieve and maintain adequate control of their psoriasis.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients with moderate to severe plaque psoriasis affecting the trunk and extremities, the physician should aim to control the symptoms stably and to an extent that the patient judges adequate (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>In aiming to achieve complete control of moderate to severe plaque psoriasis, the physician should consider each of the regimens listed in Table 2 and choose ones that are safe for and acceptable to the individual patient</td>
<td>Grade D</td>
</tr>
<tr>
<td>Cyclosporine should be reserved for intermittent control and ordinarily should not be used for periods greater than 12 weeks, unless clinically indicated (Ref. 103, LoE 1++; Refs. 23,104, LoE 2+)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Phototherapy with PUVA should be restricted to a lifetime total of 200 treatment sessions unless clinically indicated, using UV-sparing combination regimens as appropriate (Ref. 88, LoE 2++)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Phototherapy with UVB should be conducted to minimize cumulative lifetime exposure to UV light, using UV-sparing combination regimens as appropriate (Ref. 81, LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>
Table 1. Therapeutic options for ameliorating moderate to severe plaque psoriasis
(alphabetical list, grouped by class)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Evidence for efficacy as monotherapy</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcipotriol/betamethasone dipropionate combination ointment</td>
<td>LoE 1++</td>
<td>Ref. 6</td>
</tr>
<tr>
<td>Effective in moderate to severe psoriasis (including baseline PASI > 17), as well as in milder disease; should not be used on facial, flexural, and genital areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral systemic agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acitretin</td>
<td>LoE 1-</td>
<td>Refs. 8, 10</td>
</tr>
<tr>
<td>Retinoid drug; highly teratogenic and strictly contraindicated in pregnancy. Not to be used in women of childbearing age unless they are able and willing to use contraception for 3 years after discontinuing acitretin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rarely used as monotherapy, but often combined with topical agents such as potent corticosteroids, or with other therapeutics to allow for more rapid/complete control, with reduced exposure to the other therapeutic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>LoE 1++</td>
<td>Ref. 21</td>
</tr>
<tr>
<td>Immunosuppressive drug; leads to cumulative renal toxicity; can exacerbate hypertension and hypertriglyceridemia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can be highly effective in severe disease, but best employed intermittently, rather than for continuous long-term use.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>LoE 1+</td>
<td>Refs. 32, 106</td>
</tr>
<tr>
<td>Immunomodulatory and anti-proliferative drug, often chosen for long-term management.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use is limited by risk of liver toxicity and the requirement for ongoing monitoring of liver function. Sometimes administered with folate supplement to reduce systemic toxicity.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Therapeutic options for ameliorating moderate to severe plaque psoriasis (alphabetical list, grouped by class) (cont.)

<table>
<thead>
<tr>
<th>Biologic agents</th>
<th>Considerations</th>
<th>Evidence for efficacy as monotherapy<sup>a</sup></th>
<th>References</th>
</tr>
</thead>
</table>
| Adalimumab | Targets TNF-α. Safety profile, primarily based on record of use in rheumatoid and psoriatic arthritis, suggests some overlap in adverse events with other TNF-α antagonists⁵¹
Approved for use in psoriatic arthritis as well as psoriasis. Appears to be appropriate for long-term continuous use | LoE 1++ | Refs. 2, 50 |
| Etanercept | Targets TNF-α; may be associated with risk of infections, demyelinating disorders¹⁰⁷ and reactivation of latent TB or melanoma⁵²
Approved for use in psoriatic arthritis as well as psoriasis. Appropriate for long-term continuous use | LoE 1++ | Ref. 108 |
| Infliximab | Targets TNF-α. Highly effective on initial exposure, even in severe, acute flares. Variable efficacy following reinitiation or beyond the first year of continuous treatment^{63,66}
Associated with infusion reactions and risk of infections, demyelinating disorders¹⁰⁷ and reactivation of latent TB or tumours⁶⁶
Approved for use in psoriatic arthritis as well as psoriasis | LoE 1++ | Ref. 73 |
| Alefacept | Targets pathogenic T cells. Generally benign safety record, but monitoring is required to avoid depletion of CD4 T lymphocytes⁷⁴
Relative to the other biologics, alefacept monotherapy provides limited control of psoriasis, but with long periods of complete or incomplete remission in some cases. Can be combined with other therapies for fuller and more durable control⁷⁷ | LoE 1++ | Refs. 109, 110 |
Table 1. Therapeutic options for ameliorating moderate to severe plaque psoriasis (alphabetical list, grouped by class) (cont.)

<table>
<thead>
<tr>
<th>Photo(chemo)therapeutic methods</th>
<th>Considerations</th>
<th>Evidence for efficacy as monotherapy</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVA with psoralen (PUVA)</td>
<td>Psoralen may be administered orally or by immersion of affected areas in a psoralen solution, prior to irradiation with UVA (oral versus bath PUVA). Associated with cumulative risk of non-melanoma skin cancer, primarily squamous cell carcinoma88 May be combined with other agents in suitable patients to reduce UV exposure84,95,111</td>
<td>LoE† 2++</td>
<td>Refs. 85,90,112</td>
</tr>
<tr>
<td>UVB</td>
<td>Broadband UVB has been used for decades; now often applied using narrowband irradiation at 311 nm, a more effective option. Less durable remission than with PUVA,85,91 but believed to have a more benign safety profile May be combined with topical, systemic, or biologic agents for more rapid and more complete control, potentially reducing exposure to both UV light and other therapeutic agents</td>
<td>LoE† 2++</td>
<td>Refs. 85,90,112</td>
</tr>
</tbody>
</table>

*Efficacy reflects at least a 75% improvement in PASI score, as determined by a statistically significant difference from placebo in studies of moderate to severe plaque psoriasis.

†Therapy not well suited to placebo control.
Table 2. Therapeutic regimens to be considered for potential clearance of moderate to severe plaque psoriasis (alphabetical listing)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Evidence for disease clearance/near clearance within approximately 3 months of therapy</th>
<th>Evidence for disease clearance/near clearance at approximately 6 months of therapy</th>
<th>Evidence for disease clearance/near clearance beyond 1 year of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalimumab</td>
<td>Some patients may achieve 100% PASI reduction within 16 weeks of treatment (LoE 1++)</td>
<td>Some additional patients achieve/maintain 100% PASI reduction by 24 weeks of treatment (LoE 2++)</td>
<td></td>
<td>Intended for ongoing, continuous treatment</td>
</tr>
<tr>
<td>Etanercept (50 mg BIW, stepped down to 25 mg)</td>
<td>With the standard dosing regimen, some patients may achieve ≥ 90% PASI reduction within the initial 12 weeks of treatment, prior to step-down (LoE 1++)</td>
<td>Some patients achieve/maintain ≥ 90% PASI reduction by 24 weeks of treatment (LoE 2++)</td>
<td></td>
<td>Intended for ongoing, continuous treatment</td>
</tr>
<tr>
<td>Etanercept (50 mg BIW)</td>
<td>Some patients achieve ≥ 90% PASI reduction within the initial 12 weeks of treatment (LoE 1++)</td>
<td>Some additional patients achieve/maintain ≥ 90% PASI reduction by 24 weeks of treatment (LoE 2++)</td>
<td>Some patients maintain ≥ 90% PASI reduction through at least 96 weeks of treatment (LoE 2++)</td>
<td></td>
</tr>
<tr>
<td>Infliximab</td>
<td>Patients may achieve a ≥ 90% PASI reduction within the initial 6–10 weeks of treatment (LoE 1++)</td>
<td>Patients may maintain ≥ 90% PASI reduction through the initial 24 weeks of treatment (LoE 1++)</td>
<td>Patients may achieve/maintain ≥ 90% PASI reduction through at least 50 weeks of treatment (LoE 2++)</td>
<td>Some patients who maintain control or clearance through 1 year of treatment may subsequently develop resistance to infliximab treatment</td>
</tr>
</tbody>
</table>
Table 2. Therapeutic regimens to be considered for potential clearance of moderate to severe plaque psoriasis (alphabetical listing) (cont.)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Evidence for disease clearance/near clearance within approximately 3 months of therapy</th>
<th>Evidence for disease clearance/near clearance at approximately 6 months of therapy</th>
<th>Evidence for disease clearance/near clearance beyond 1 year of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUVA or narrowband UVB administered twice weekly</td>
<td>Patients may achieve clearance within 4–15 weeks (LoE 1+95,90,91)</td>
<td>Remission following treatment cessation may be maintained for 6 months in some patients (LoE 2++95,91)</td>
<td></td>
<td>Treatment to be discontinued upon clearance of symptoms and may be reinitiated when needed</td>
</tr>
<tr>
<td>Narrowband UVB administered thrice weekly</td>
<td>Patients may achieve clearance within 4–15 weeks (LoE 1+90)</td>
<td>Remission following treatment cessation may be maintained for 6 months in some patients (LoE 2++90)</td>
<td>Remission following treatment cessation may be maintained for at least 12 months in some patients (LoE 2++90)</td>
<td>Treatment to be discontinued upon clearance of symptoms and may be reinitiated when needed</td>
</tr>
<tr>
<td>RePUVA administered thrice weekly with daily oral acitretin</td>
<td>Patients may achieve a ≥ 90% PASI reduction within 6–12 weeks (LoE 1+113)</td>
<td></td>
<td></td>
<td>Both systemic and phototherapy may be discontinued upon clearance of symptoms</td>
</tr>
</tbody>
</table>
Table 2. Therapeutic regimens to be considered for potential clearance of moderate to severe plaque psoriasis (alphabetical listing) (cont.)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Evidence for disease clearance/near clearance within approximately 3 months of therapy</th>
<th>Evidence for disease clearance/near clearance at approximately 6 months of therapy</th>
<th>Evidence for disease clearance/near clearance beyond 1 year of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband ReUVB with daily oral acitretin</td>
<td>Patients may achieve 96–100% clearance of lesions within 30 phototherapy sessions (LoE 2+)</td>
<td></td>
<td></td>
<td>Both systemic and phototherapy may be discontinued upon clearance of symptoms. See Table 1 for restrictions on acitretin use.</td>
</tr>
<tr>
<td>Narrowband ReUVB administered four times weekly with daily topical tazarotene</td>
<td>Clearance (PASI score = 0 or 1) may occur within 7 weeks (LoE 2+)</td>
<td></td>
<td></td>
<td>Phototherapy may be discontinued upon clearance of symptoms and reinitiated when topical treatment offers insufficient control. See Table 1 for restrictions on acitretin use.</td>
</tr>
<tr>
<td>Narrowband UVB administered thrice weekly plus weekly alefacept</td>
<td>Clearance (PASI score ≤ 3) may occur within 12 weeks (LoE 2–77)</td>
<td></td>
<td></td>
<td>Systemic and phototherapy may be discontinued upon clearance of symptoms.</td>
</tr>
</tbody>
</table>
Table 2. Therapeutic regimens to be considered for potential clearance of moderate to severe plaque psoriasis (alphabetical listing) (cont.)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Evidence for disease clearance/near clearance within approximately 3 months of therapy</th>
<th>Evidence for disease clearance/near clearance at approximately 6 months of therapy</th>
<th>Evidence for disease clearance/near clearance beyond 1 year of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband UVB administered twice weekly with daily topical calcipotriol</td>
<td>Patients may achieve clearance within 12 weeks (LoE 2++)</td>
<td></td>
<td></td>
<td>Phototherapy may be discontinued upon clearance of symptoms and reinitiated when topical treatment offers insufficient control. Addition of calcipotriol significantly decreases the UVB dose required for clearance.</td>
</tr>
<tr>
<td>UVB plus crude coal tar (Goeckerman and related procedures)</td>
<td>Clearance (PASI score ≤ 3) may occur within 3–7 weeks of initiating UVB treatment (LoE 3)</td>
<td></td>
<td></td>
<td>Basic treatment is commonly supplemented with other phototherapeutic or systemic treatments (e.g., acitretin or cyclosporine). All treatments are discontinued upon clearance of symptoms.</td>
</tr>
</tbody>
</table>
Table 3. Drug interactions with traditional systemic agents*

<table>
<thead>
<tr>
<th>Agent</th>
<th>Drug interactions</th>
<th>Drugs and drug classes that may potentiate renal dysfunction when used with cyclosporine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acitretin†</td>
<td>• Other systemic retinoids, including vitamin A supplements</td>
<td>• Aminoglycosides</td>
</tr>
<tr>
<td></td>
<td>• Methotrexate</td>
<td>• Amphotericin B</td>
</tr>
<tr>
<td></td>
<td>• Phenytoin</td>
<td>• Ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td>• Progesterone preparations†</td>
<td>• Colchicine</td>
</tr>
<tr>
<td></td>
<td>• Tetracyclines</td>
<td>• Cotrimoxazole/trimethoprim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Digoxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fibrates, including bezafibrate and fenofibrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Histamine H2 receptor antagonists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NSAIDs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Melphalan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Methotrexate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Statins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tacrolimus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vancomycin</td>
</tr>
<tr>
<td>Cyclosporine†</td>
<td>• Etoposide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lercanidipine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Potassium-sparing diuretics and other antihypertensive agents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(angiotensin-converting enzyme inhibitors, angiotensin II receptor antagonists)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Repaglinide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For drugs that may alter cyclosporine exposure, consult the product monographs</td>
<td></td>
</tr>
</tbody>
</table>
| Methotrexate† | Potentially hepatotoxic or nephrotoxic drugs: | Drugs and drug classes that may alter methotrexate exposure: |}

*These potential adverse drug interactions are those noted in the Canadian product monographs for the three traditional systemic agents discussed in this chapter. The physician should consult the product monographs for information on the safe use of these agents, including fuller discussion of possible drug interactions.

†Acitretin is teratogenic and is absolutely contraindicated in women of childbearing age, unless they can be relied on to use effective contraception during treatment and for 3 years after. However, microdosed progesterone preparations (minipills) may be an inadequate method of contraception for women undergoing acitretin therapy.
Note added in proof: In December 2008, Health Canada approved an additional biologic agent, ustekinumab, on the strength of two reports (Refs. 117, 118). Ustekinumab is indicated for use in moderate to severe plaque psoriasis.

References

107. Mohan N, Edwards ET, Cupps TR, et al. Demyelination occurring during anti-
tumor necrosis factor alpha therapy for inflammatory arthritis. Arthritis Rheum
110. Lebwohl M, Christophers E, Langley R, et al. An international, randomized, double-
blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with
111. Iest J, Boer J. Combined treatment of psoriasis with acitretin and UVB phototherapy
UV-B phototherapy as treatments for psoriasis: A randomized controlled trial. Arch
113. Saurat JH, Geiger JM, Amblard P, et al. Randomized double-blind multicenter study
comparing acitretin-PUVA, etretinate-PUVA and placebo-PUVA in the treatment of
114. Actavis Group PTC EHF. Soriatane. Canadian Product Monograph. Date of preparation:
May 16, 2008.
Date of revision: October 3, 2008.
116. Wyeth Canada. Methotrexate. Canadian Product Monograph. Date of revision:
117. Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a
human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week
results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet
118. Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a
human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week
results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet
2008;371:1675–84.
CHAPTER 7: SPECIAL POPULATIONS AND CIRCUMSTANCES

Canadian Guidelines for the Management of Plaque Psoriasis

KEY POINT

Large, controlled clinical studies are almost unknown in special populations with psoriasis, so physicians must rely largely on the case literature and clinical judgment when treating these patients. Guidance is provided here, but no firm recommendations can be offered.

Psoriasis in children

Although there is limited epidemiologic data available about psoriasis in children, it is evident that the therapeutic challenges differ from those in adult disease. Compared with those in adults, children’s lesions are often smaller, thinner, and less scaly, which can make diagnosis more difficult. Facial and flexural involvement are more common in children than in adults; this includes the special clinical variant known as psoriatic diaper rash, which can occur up to the age of 2 years and involves sharply demarcated, brightly red plaques, often on the inguinal folds. Erythroderma and psoriatic arthritis are relatively rare in the pediatric population. Pediatric psoriasis also differs from adult disease in that it is more often attributable to direct precipitating factors, which may include trauma, infections, drugs, or stress.

Ensuring treatment adherence in pediatric patients poses a special challenge. Both the patient and the caregivers may require appropriately tailored education to convey the chronic nature of the disease and the likelihood of lifelong follow-up and treatment.

Topicals

In many pediatric patients, topicals are sufficient to control disease when combined with conscientious skin care. It is recommended that, unless the disease is widespread and associated with significant quality-of-life issues, treatment of psoriasis in children should start with a topical agent. These include various emollients, as well as topical corticosteroids, retinoids, calcipotriol, and tar- or salicylic acid-containing products, as discussed in Chapter 5 (Management of mild plaque psoriasis).

Corticosteroids are often the first therapeutic choice in children with psoriasis; they are effective, but care needs to be taken to limit long-term effects. It has been suggested that the therapeutic regimen should use the least potent steroid that is effective, and taper the strength and/or dose as lesions improve. Parents of children with psoriasis may be fearful about the effects of long-term steroid therapy on their child’s health; it is important to address these fears and provide education about the risks, benefits, and appropriate use of topical steroids.

Calcipotriol is clinically effective in children and almost completely free of local or systemic side effects. Due to the risk of hypercalcemia, it may be appropriate to monitor ionized calcium in children treated long-term with calcipotriol.

Anthralin is another potentially useful option in mild to moderate pediatric psoriasis. Since therapeutic outcome and adverse events often depend on correct application, it is important to ensure that patients and parents are appropriately informed about application procedures. However, commercial formulations of anthralin are not currently available in Canada.

Systemics

There are limited clinical data available about the use of systemic therapies in pediatric patients. Therefore, these agents should be reserved for children with severe and otherwise treatment-refractory disease.
Cyclosporine
Cyclosporine appears to be well tolerated in children, with no unanticipated side effects. However, due to its potential for renal effects and hypertension, it should be reserved for the most severe and therapy-resistant cases in childhood and adolescence.

Methotrexate
Good clinical responses to methotrexate have been obtained in several studies; regular monitoring is required to prevent hepatotoxicity and hematotoxicity. There is evidence that methotrexate can be used safely to control severe episodes in young patients, then withdrawn as disease subsides.

Retinoids
Acitretin and related compounds have been used safely and successfully in children. Long-term exposure to acitretin may lead to premature epiphyseal closure and impaired bone growth; therefore, regular and vigilant follow-up is required. In addition, acitretin is teratogenic and is absolutely contraindicated in women in their reproductive years, unless they reliably commit to using contraception during the course of treatment and for 3 years thereafter. Similar considerations apply to adolescent girls and those nearing puberty.

Biologics
Of the biologic agents, the best studied for pediatric psoriasis is etanercept. One large randomized controlled trial showed that etanercept can be effective in children from age 4 to 17 years. Dosing was once weekly with 0.8 mg etanercept per kg body weight, up to a maximum of 50 mg. Significant improvements in PASI scores were evident within 4 weeks, with 90% improvements in PASI scores seen in approximately one-fourth of patients by 12 weeks of treatment; 75% improvement occurred in approximately half of patients receiving etanercept. These benefits were maintained up to at least 36 weeks of treatment. There is also preliminary evidence that in pediatric psoriasis, etanercept therapy may allow tapering of other treatments.

The safety of etanercept has been most extensively studied in children with polyarticular juvenile rheumatoid arthritis; no new safety concerns have emerged in these studies. In the pediatric psoriasis trial for etanercept, there were isolated cases of severe infection associated with treatment.

Preliminary reports suggest future therapeutic prospects for pediatric use of infliximab as well.

Phototherapy
In severe, extensive, or treatment-resistant disease, particularly in older children and adolescents, UVB is an effective option that should be tried before moving to more toxic therapies such as methotrexate, retinoids, or cyclosporine. It is best to minimize the cumulative UVB dose and thereby limit the long-term carcinogenic risk (see Chapter 6: Management of moderate to severe plaque psoriasis).

UVB should be used with caution in younger children, with due consideration of the treatment’s risks and benefits.

PUVA should likewise be used with caution in younger patients as it is carcinogenic and may accelerate skin aging.

Pregnancy
The treatment of psoriasis in pregnant patients requires special care due to the potential teratogenic effects of several commonly used agents. Fortunately, many women may require minimal treatment while pregnant, as hormonal changes during pregnancy result in symptomatic improvement for more than half of patients surveyed. The potential for pregnancy-associated remission appears to be linked to the presence of the HLA-Cw*0602 allele of HLA-C.

Psoriasis treatment prior to or during pregnancy
Some physicians may wish to withhold standard treatments to pregnant patients, due to concerns for the fetus’s safety. However, for pregnant patients who require psoriasis treatment, there are effective options that are relatively safe. The fetal risks of any pharmaceutical treatment can be classified according to the US Food and Drug Administration’s (FDA’s) scale (see Table 1),
which takes into account the body of human and animal evidence regarding the drug’s teratogenic potential. This classification system is currently under revision and should be considered as a general summary of overall evidence, rather than as a tool for estimating the risk of developmental toxicity in individual patients.

Data concerning the use of major psoriasis therapies in pregnant patients are summarized in Table 2.

Table 1. FDA classifications for fetal risk

<table>
<thead>
<tr>
<th>Designation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adequate, well-controlled studies in pregnant women have not shown an increased risk of fetal abnormalities</td>
</tr>
<tr>
<td>B</td>
<td>Either: • Animal studies have revealed no evidence of harm to the fetus; however, there are no adequate and well-controlled studies in pregnant women or • Animal studies have shown an adverse effect, but adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus</td>
</tr>
<tr>
<td>C</td>
<td>Either: • Animal studies have shown an adverse effect and there are no adequate and well-controlled studies in pregnant women or • No animal studies have been conducted and there are no adequate and well-controlled studies in pregnant women</td>
</tr>
<tr>
<td>D</td>
<td>Studies (adequate and well-controlled, or observational) in pregnant women have demonstrated a risk to the fetus. However, the benefits of therapy may outweigh the potential risk</td>
</tr>
<tr>
<td>X</td>
<td>Studies (adequate and well-controlled, or observational) in animals or pregnant women have demonstrated positive evidence of fetal abnormalities. The use of the product is contraindicated in women who are or may become pregnant</td>
</tr>
<tr>
<td>Therapy</td>
<td>FDA classification*</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Topicals</td>
<td></td>
</tr>
</tbody>
</table>
| Anthralin and tars | C: Anthralin, tar-based bath products | • Measurable levels of systemic absorption but no adverse fetal effects have been reported\(^{24}\)
• No difference between pregnancy outcomes in patients treated with tar and untreated patients\(^{24}\) | • Tar products are likely safe when used in the second and third trimesters |
| | Uncharacterized: Other topical tar products | | |
| | | | |
| Calcipotriol | C | • Limited data available in pregnancy\(^{24}\) | • A reasonable option for use in pregnant patients requiring control of mild plaque psoriasis; the calcipotriol/betamethasone combination product may also be used on appropriate areas |
| | | • Systemic absorption is 6% — unlikely to have significant effects\(^{25}\) | |
| Corticosteroids | C | • Systemic effects are minimal because roughly 3% is absorbed\(^{25}\) | • Risks of high-potency agents on large areas may approach those of systemic steroids\(^{26}\) |
| | | • Safety varies with the strength of the agent, the vehicle, and the body surface involved\(^{26}\) | • Often used for mild, localized disease in pregnant patients\(^{24}\) |
| | | • Two population-based studies found no increased risk of fetal abnormalities\(^{27}\) | |
| Tazarotene | X | • Highly teratogenic with systemic administration, but there is no evidence of significant systemic absorption with topical application.\(^{28}\) Since a teratogenic risk cannot be ruled out, pregnant women should discontinue use of this topical retinoid\(^{29}\) | • Although the X classification implies that a definite risk has been seen in controlled studies, teratogenicity has only been observed in studies of systemic administration\(^{28}\) |

\(^{24}\): Reference number for specific study or guideline.
\(^{25}\): Reference number for specific study or guideline.
\(^{26}\): Reference number for specific study or guideline.
\(^{27}\): Reference number for specific study or guideline.
\(^{28}\): Reference number for specific study or guideline.
\(^{29}\): Reference number for specific study or guideline.
<table>
<thead>
<tr>
<th>Therapy</th>
<th>FDA classification</th>
<th>Rationale</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologics</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>C</td>
<td>Has been used in pregnant transplant patients with no clear evidence of adverse effects on outcomes, but studies on long-term effects are lacking</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>X</td>
<td>Known abortifacient; teratogenic in surviving fetuses</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Treatment options and risk classifications in pregnant psoriasis patients (cont.)

<table>
<thead>
<tr>
<th>Therapy</th>
<th>FDA classification*</th>
<th>Rationale</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemics (cont.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acitretin</td>
<td>X</td>
<td>• Powerful teratogen<sup>25</sup></td>
<td>• Female patients should avoid becoming pregnant during treatment and for 3 years after discontinuing acitretin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phototherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUVA</td>
<td>C: Psoralens</td>
<td>• No evidence of teratogenicity but known to be mutagenic<sup>25</sup></td>
<td>• Should be given only in cases where clearly needed, due to mutagenic potential of systemic psoralens<sup>24</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No increase seen in infant or child mortality or congenital malformations<sup>30</sup></td>
<td>• When PUVA is necessary during pregnancy, consider bath PUVA to minimize systemic effects and fetal exposure<sup>24</sup></td>
</tr>
<tr>
<td>UVB</td>
<td>Not applicable</td>
<td>• Considered the safest treatment for extensive psoriasis during pregnancy; can be initiated or maintained in patients with widespread disease not controllable by topical agents<sup>25</sup></td>
<td>• Potential for re-activation/eruption of herpes simplex — may require measures to avoid transmission to the infant at delivery<sup>24</sup>. Otherwise, there is no known fetal risk for either broadband or narrowband UVB treatment<sup>25</sup></td>
</tr>
</tbody>
</table>

*See Table 1.
Therefore, when psoriasis treatment is required in pregnant patients, topical corticosteroids, topical calcipotriol (either alone or in combination with corticosteroids), or anthralin may be used to control mild disease, whereas UVB is an appropriate option in more severe disease, and cyclosporine, bath PUVA, and biologics may be considered when the benefits clearly outweigh the risks of treatment.24

Nursing mothers
Female patients who have experienced a remission in psoriatic symptoms during pregnancy may flare following parturition.20 In nursing mothers, systemic methotrexate is contraindicated, as it is secreted in the milk in quantities that may cause harm to the infant.26 Psoralens are not absolutely contraindicated in nursing mothers but should be avoided if possible.

Although some investigators caution against using cyclosporine in nursing mothers,26 there are cases where it has been used successfully and safely; breast-milk levels were variable but infant plasma levels, when detectable, were low. If cyclosporine must be continued, drug levels in the milk and the infant should be monitored.31 Topical calcipotriol and corticosteroids appear to be reasonable options for nursing mothers, as is UVB in the case of more severe disease.

Pregnancy in partners of male patients receiving psoriasis treatment
Although little is known about the fetal effects of paternal psoriasis treatment, certain precautions are recommended for male patients who could potentially father children. Methotrexate has been linked to oligospermia, although there is no evidence to date of the sperm damage resulting in fetal malformations.24 Although there is little hard evidence, some investigators suggest a conservative approach whereby male patients are advised to use contraception during methotrexate treatment29 and delay conception attempts for at least 3 months after the end of therapy.24 It is not currently known whether the teratogenic risk of systemic retinoids extends to the children of male patients treated with acitretin.29 There is also no evidence of fetal harm with paternal PUVA therapy.32

The elderly
Elderly patients with psoriasis are more likely to experience adverse drug reactions than younger adults, mainly due to age-related changes to pharmacokinetics; existing comorbidities such as hypertension, type 2 diabetes, and hyperlipidemia, which may limit the use of some therapeutic options; and polypharmacy. In treating geriatric patients, physicians must be aware of the range of interactions that can occur between antipsoriatic agents and other drugs.

Dermatological drugs that are predominantly eliminated by the kidney (e.g., methotrexate) may be eliminated more slowly in the elderly, and, therefore, a dose reduction should be considered. Methotrexate is also hepatotoxic and, like other such drugs, should be used with caution in the elderly.31

Topical psoriasis treatments are often prescribed for elderly patients as first-line therapy due to the potential risk of adverse reactions and drug interactions caused by polypharmacy or altered pharmacokinetics with systemic therapy.34 Calcipotriol/betamethasone dipropionate ointment given once daily is effective and well tolerated in the treatment of psoriasis regardless of the age group.34

Of the available biologic drugs, the only ones with published findings in the elderly population are alefacept and etanercept. Alefacept is well tolerated and effective in elderly patients.35 Etanercept appears to be safe for this population as well. When used with standard dosing (25 mg subcutaneously, twice weekly, with or without an initial dose of 50 mg twice weekly for 12 weeks), incidence of adverse events in the elderly was similar to that with placebo.33,36

Phototherapy is also a potentially valuable although poorly studied option for elderly patients. Treatment with broadband UVB two to three times per week for 8–12 weeks is effective in postmenopausal women with moderate plaque psoriasis (baseline PASI 6–12).37

Patients with hepatitis B or C
Patients with psoriasis or other conditions that cause skin lesions may be at increased risk of contracting hepatitis B or C through skin contact with infected bodily fluids. Attaining effective control of psoriasis
can therefore play an important role in avoiding parenteral exposure to these viruses.38

Treatment of hepatitis B or C infection with interferons has been linked to the development of de novo psoriasis or the exacerbation of existing psoriasis in many patients.39-41

In patients with hepatitis, the benefits of using any immunosuppressive therapy must be weighed against the potential for viral reactivation or exacerbation of the infection. Due to their low potential for systemic absorption, topical therapies can generally be considered safe for control of psoriasis in patients with hepatitis. For more severe disease, there is accumulating evidence that certain systemic therapies, notably cyclosporine and the TNF-α antagonists, may be safe with appropriate screening and monitoring, as outlined below. Conversely, methotrexate is contraindicated in patients with any form of chronic liver disease, including alcoholic liver disease and hepatitis B or C.

Hepatitis B

Methotrexate should not be prescribed to patients with hepatitis B due to its potential hepatotoxicity. A case report describes a patient with severe psoriasis who developed fatal hepatorenal failure after treatment with methotrexate; she had no known history of liver disease but serology performed during her illness showed evidence of a long-standing HBV infection. Although the organ failure and fatal outcome cannot be definitively linked to the use of methotrexate, it is prudent to avoid this agent in patients with hepatitis B.42

Isolated instances of hepatitis B reactivation have been observed in patients undergoing treatment with TNF-α antagonists. Additionally, three cases of hepatic complications have been described in hepatitis B virus- (HBV-) positive patients treated with infliximab, with or without methotrexate, for Still’s disease, ankylosing spondylitis, or RA; however, there was no evidence of HBV reactivation or exacerbation of hepatitis symptoms in any of these cases.43 The fact that most of these patients were concomitantly treated with immunosuppressive agents complicates the interpretation of these observations, and several case reports indicate that TNF-α antagonists can be safely used in patients with hepatitis B.

It is recommended that all psoriasis patients who are candidates for therapy with a TNF-α antagonist should be screened for HBV before initiating treatment. In HBV-positive patients with inactive disease, a course of antiviral therapy is recommended, starting 2–4 weeks before the TNF-α antagonist. All HBV-positive patients receiving anti-TNF therapy should undergo close follow-up to monitor liver function and viral load.41

Hepatitis C

There is a lack of available data concerning psoriasis treatment in patients with the hepatitis C virus (HCV), but the limited findings to date suggest that with appropriate monitoring, TNF-α antagonists may be safe in this population. Etanercept may act as an adjuvant to standard antiviral therapies for hepatitis C virus (HCV),44 although at least one case study has identified an exacerbation of hepatitis C symptoms with etanercept therapy for RA.45 However, a larger study of 24 HCV-positive patients receiving etanercept or infliximab for RA showed no significant adverse events or increases in liver enzymes or viral load.43 A similar lack of HCV exacerbation was seen in a separate study of two patients whose psoriasis was treated with alefacept.46 For HCV-positive patients treated with these biologic agents, serum aminotransferases and HCV RNA levels should be regularly monitored; if long-term use of the immunosuppressive therapy is anticipated, strong consideration should be given to a baseline liver biopsy.43

Cyclosporine may also be a useful treatment option in patients with comorbid psoriasis and hepatitis C, as there is in vitro evidence that cyclosporine can suppress replication of the hepatitis C virus. This finding is supported by a case study in which a single patient exhibited a dramatic improvement in his psoriasis with cyclosporine treatment but did not experience any exacerbation of hepatitis C symptoms.47
HIV-positive patients

Prior to the introduction of highly active antiretroviral treatment (HAART), skin disease was common in patients seropositive for the human immunodeficiency virus (HIV).48 Psoriasis is not necessarily more common in HIV-positive individuals than in the general population, but the HIV-associated variant of psoriasis is more likely to be associated with arthritis, more resistant to treatment,49 and often more severe50 than other forms of the disease.

A significant proportion of patients with HIV-associated psoriasis will have pustular, acral involvement, sometimes accompanied by severe, destructive nail lesions.51 Involvement of the inguinal creases and genitalia is also more common in people with HIV-associated psoriasis than in the general psoriasis population.52 Treatment of HIV-associated genital psoriasis should follow the recommendations outlined in Chapter 9 (Management of facial, flexural, and genital psoriasis).

HIV-associated psoriasis has an apparently paradoxical pathology. HIV is a disease of decreasing T cell counts, but psoriasis is thought to be a T cell–mediated disease. Nevertheless, psoriasis therapies that target T cells are effective in HIV-associated disease, a counterintuitive finding that may be explained by HIV’s preferential killing of CD4+ T cell subpopulations, sparing other, potentially pathogenic T cell populations.53

Since HIV/AIDS is a disease of immunosuppression, there has been understandable concern in the medical community about the use of immunosuppressive agents in this patient population. Many of the concerns may be exaggerated in the current era, when HAART is widely used in HIV-positive patients, reducing overall viral loads and improving immune status. However, it is still important to be vigilant when prescribing an immunosuppressive agent to an HIV-positive individual, regardless of the patient’s antiviral therapy.43

Antivirals

Primary treatment of HIV with the antiviral drug zidovudine (AZT) can have secondary beneficial effects on skin lesions, including nearly complete or complete clearance of symptoms in up to 90% of patients with HIV-associated psoriasis.54 The same treatment was also beneficial, although less dramatically so, in approximately one-third of HIV-negative psoriasis patients.55

Topicals

Since HIV-associated psoriasis often has a more aggressive, extensive, and therapy-resistant presentation than other forms of the disease, topical agents in HIV-positive patients have limited success rates, although topical calcipotriol may be of benefit in some patients. As in other patient populations, psoriasis patients with HIV should not exceed the standard exposure limit of 100 g ointment/week; therefore, calcipotriol may be most appropriate for patients with limited body surface involvement.56

Systemics

Cyclosporine

Since HIV selectively attacks CD4+ T cells, cyclosporine, which also suppresses CD4 cells, would not be expected to be a viable therapeutic option. Therefore, cyclosporine has generally been avoided in HIV-positive patients, and its use has not been extensively studied.56

However, there have been isolated case reports of patients who achieved almost complete control of psoriasis using cyclosporine, without any signs of immune deterioration.56

Methotrexate

Methotrexate is considered to be inappropriate for HIV-positive patients, due to several reports of rapid progression of immunosuppression, some with fatal outcomes. In most cases, methotrexate was used in combination with sulfamethoxazole and/or trimethoprim; therefore, it is unclear whether the immunosuppressive effects were due to the methotrexate alone, to one of the other drugs, or to the combination.48

Although further studies in severe psoriatic arthritis failed to show any significant immunosuppressive risks in HIV-positive patients,57 methotrexate should not be used in this population unless absolutely necessary.
Canadian Guidelines for the Management of Plaque Psoriasis

Retinoids
Given the concerns about immunosuppression associated with most other systemic therapies in HIV-positive patients, systemic retinoids have been particularly useful for generalized disease.51

Acitretin appears to be safe and effective in HIV-associated psoriasis. In a pilot study of acitretin monotherapy in 11 patients, 54% had “good to excellent” responses, with 36% achieving complete clearance. There was no evidence of a link between baseline levels of immunosuppression and treatment success.49

Biologics
TNF-α may be intimately involved in HIV pathogenesis; it has been implicated in viral propagation and lymphocyte depletion, and may also mediate some of the clinical manifestations of AIDS. In vitro, HIV infection has been shown to induce TNF-α expression in cultured cells. Conversely, exogenous TNF-α enhances HIV replication.41

Inhibition of TNF-α in HIV-associated psoriasis is therefore a theoretically appealing strategy that could not only ameliorate the symptoms of psoriasis but potentially also have antiviral effects. However, there have been concerns that inhibiting TNF-α in patients who are already immunocompromised may leave them even more vulnerable to opportunistic infections.43

Several trials have examined the potential role of TNF-α inhibition in HIV-associated psoriasis. In three randomized trials of infliximab or etanercept in HIV-positive patients, no serious adverse events were associated with either agent. One of these studies also found that adding etanercept appeared to enhance the efficacy of standard antituberculous therapy in HIV-positive patients with TB.43

Despite these encouraging safety findings, the role of TNF-α in HIV-associated psoriasis is a matter of active debate. Although HIV-associated psoriasis is responsive to alefacept, which acts generally on T cells,53 the efficacy of the TNF antagonists (adalimumab, etanercept, infliximab) in this patient population has not been established.

Phototherapy
The use of ultraviolet light in HIV-positive patients may at first seem counterintuitive, as both UVA and UVB activate HIV replication in vitro. However, the addition of psoralens to UVA has the opposite effect in cultured cells, leading to viral inactivation.58

In vivo, UVB therapy does not generally lead to opportunistic infections or malignancies,48 nor is there evidence that PUVA causes viral activation.51,58

PUVA
PUVA may be particularly useful for treatment of thick plaques and/or palmoplantar lesions, which are claimed to be relatively common in HIV-associated psoriasis.51 However, this therapeutic option should be used with caution, due to the gastrointestinal effects of psoralens and the potential for carcinogenesis in this immunocompromised patient population.51

UVB
UVB is an effective treatment for psoriasis in HIV-positive patients and is the most widely used phototherapy in this population.51 The response to UVB in HIV-positive individuals is identical to that of matched seronegative controls, and no deterioration of immune status or other significant adverse events has been observed.59,60

Patients with a history of solid tumours
Since several of the systemic therapies used in psoriasis treatment have been linked to increased risk of reactivated61 or de novo malignancies,62,63 caution is required in choosing a therapeutic option for patients with a history of solid tumours.

In patients with a history of malignancy or existing malignancies, the T cell modulator alefacept is contraindicated, and the TNF-α antagonists should only be used with caution. Use of a biologic should be re-evaluated in the event that the patient develops a new malignancy while on therapy.

For patients with malignant or pre-malignant skin alterations, cyclosporine should only be used if no other option for successful therapy exists and only after the skin alterations have been treated.
TNF-α antagonists and elective surgery

Because of a potential increased risk of postsurgical infection, authorities in RA recommend that TNF-α antagonists (etanercept, infliximab, and adalimumab) be withheld for a period of at least 1 week prior to and 1 week after surgery. Several European studies have examined complication rates for patients with rheumatoid arthritis undergoing elective foot and ankle surgery or other elective surgery. From this work, it does not appear that the use or pre-operative discontinuation of TNF-α antagonists influences the rates of surgical complications, including incidence of infections. However, because no such analysis has been published outside of the setting of RA, the conservative choice of suspending TNF-α antagonist treatment should still be considered for psoriasis patients undergoing elective surgery. The optimal period of suspension is not known; following recommendations for RA patients cited in Ref. 66, the TNF-α antagonists should be discontinued for a period of four half-lives prior to surgery, thus: 12 days for etanercept, 39 days for infliximab, and 56 days for adalimumab.

Systemic treatments and vaccination

Since most of the traditional and biologic systemic agents currently used in the treatment of psoriasis act by modifying the immune response, the use of systemic treatments has the potential to alter the efficacy and safety of vaccinations. With the sole exception of acitretin, Canadian product monographs for each of the systemic or biologic agents discussed in Chapter 6 (Management of moderate to severe plaque psoriasis) note the possibility that the psoriasis treatment will affect the outcome of vaccination. Before vaccinating a patient with psoriasis or initiating treatment with one of these agents, the physician should consult the appropriate monograph.

For patients receiving a biologic agent, inactivated or subunit-based vaccines are generally thought to be safe and effective and can be administered when clinically indicated. These vaccines can also be used in patients undergoing methotrexate or cyclosporine treatment; however, it should be noted that the efficacy of the vaccination may be compromised.

Although there are no data showing a direct link between vaccination and infection in patients receiving systemic therapies, the use of live or live-attenuated vaccines in these patients is not recommended due to the theoretical risk that a live immunization agent could produce an infection when introduced into an altered immune system.
Psoriasis is a chronic condition whose onset and subsequent course cannot be predicted with any certainty. However, psoriatic exacerbations have been associated with various exogenous factors. Among other environmental factors, specific drugs and drug classes are known to trigger psoriatic exacerbations in individuals with pre-existing psoriasis. Some of these treatments can also induce psoriasis in individuals with no history of this disease.

Instances of drug-associated exacerbations, including idiosyncratic reactions to antipsoriatic drugs, have been widely reported. It is often difficult to establish the direct causal link between a therapeutic and a psoriatic exacerbation, especially when the episode occurs in a patient with a history of unstable psoriasis. In some cases, it may be possible to test the association by withdrawing the putative trigger therapy and then re-challenging the patient with it after the episode has resolved. However, such experiments should be undertaken only after a thorough analysis of potential benefits and risks.

KEY POINT

Psoriasis is a chronic condition that often waxes and wanes in severity, so long-term management is a challenge for the treating physician. Understanding the factors that may cause psoriatic exacerbations, flares, and rebounds, such as environmental factors, emotional stress, and medications, will facilitate timely clinical intervention and reduce the risk of life-threatening flares.

Unfortunately, much of the published evidence on drug-related flares and exacerbations is of low level, relying on isolated case reports; some potential triggers, such as chloroquine and other antimalarials, are therefore controversial. However, exacerbations have been documented in patients receiving biologic agents (TNF inhibitors) and non-biologic treatments (e.g., corticosteroids and cyclosporine).

New-onset psoriasis

Infection

In children and young adults, new-onset guttate psoriasis may be triggered by streptococcal infections, typically streptococcal pharyngitis, but sometimes also perianal streptococcal cellulitis. Some individuals with guttate psoriasis may progress to plaque psoriasis, and parents of children with guttate psoriasis should be counselled accordingly. Pure guttate psoriasis is amenable to treatment with phototherapy and, in individuals with clinically diagnosed streptococcal infections, concomitant antibiotics. Tonsillectomy has been suggested for patients with repeated streptococcal infections and guttate flares as a possible means to prevent recurrence of these episodes or progression to plaque psoriasis. However, any benefits of such an approach remain speculative.

TNF inhibitors

When used to treat rheumatoid arthritis and other non-cutaneous inflammatory disorders, the TNF inhibitors (infliximab, adalimumab, and etanercept) have each been shown to induce psoriasis in individuals with neither a personal nor a family history of the disease. This new-onset psoriasis may exhibit either a plaque or a pustular morphology. Curiously, in some plaque psoriasis patients treated with etanercept or infliximab, the exacerbations observed have been guttate in morphology, presenting as early as 15 days and as late as 18 months after starting therapy.

In patients with new-onset psoriasis receiving TNF inhibitors for non-cutaneous disorders, treatment discontinuation should be approached cautiously, since a flare of the underlying disease could prove
more deleterious than the dermatological reaction. In some cases, the psoriatic flare has been managed successfully by adding a concomitant therapy. Transitioning the patient to another therapeutic of the same class (i.e., another TNF inhibitor), although helpful in some instances, has also been reported to provoke further flaring.9,12

Exacerbation of existing psoriasis

Exacerbation is defined as any worsening of a patient’s psoriasis. Patients with plaque psoriasis have been reported to experience worsening of their disease when subjected to a wide variety of putative triggers, including physical trauma to the skin, cold weather, emotional stress, streptococcal throat infection, smoking, alcohol intake, and postpartum hormonal changes (see Chapter 7: Special populations and circumstances), as well as certain drugs (see below and Chapter 14: Comorbidities).10,16-25 Patients should therefore be encouraged to make lifestyle changes such as smoking cessation and avoid suspected triggering factors when possible. In the case of drug-induced exacerbation, it may be beneficial to discontinue the suspected drug if possible and replace it with an alternative agent, preferably one of a different therapeutic class.

Flares

A psoriatic flare is an exacerbation occurring while the patient is on therapy. A flare differs from the foregoing psoriatic disease, either in its morphology or in the extent or severity of individual lesions.

Pustular psoriasis flares can be triggered by infection or ultraviolet light in patients with stable plaque psoriasis.26 Approximately 6% of patients with acute generalized pustular (also called von Zumbusch) psoriasis have a history of plaque psoriasis. Patients with acute generalized pustular psoriasis are at greatest risk of developing serious medical complications.26

In patients with previously stable plaque psoriasis, allergic contact dermatitis has also been reported to induce pustular lesions. The allergens implicated include zinc pyrithione-containing shampoos and calcipotriol cream.27-29 Such pustular flares, resulting from contact allergic dermatitis, have been successfully managed by narrowband UVB, short-term cyclosporine, or methotrexate treatment.27-29

Erythrodermic psoriasis is a form of inflammatory psoriasis characterized by intense, generalized erythema and with minimal scaling. Symptoms include fever, chills, pruritus, malaise, and fatigue. Patients may suffer from lower-extremity edema, hypothermia due to excessive heat dissipation from dilated capillary beds, and hypoalbuminemia.26

Erythrodermic flares may occur following use of drugs such as lithium (see Chapter 14: Comorbidities), and they have been associated, with varying degrees of evidence, with other environmental factors such as staphylococcal infection, emotional stress, physical trauma to the skin, and alcohol consumption.5 In individuals receiving antipsoriatic treatments, such flares have also been ascribed to the use of topical anthralin or corticosteroids; systemic corticosteroids, cyclosporine, and etretinate; and UV burns associated with PUVA treatment.26,10-32

Erythrodermic psoriasis can be potentially life-threatening if not adequately managed. Infliximab has been used successfully to control severe erythrodermic flares.33,34 Either adalimumab or infliximab may be considered for control of generalized pustular flares.35,36

Rebound

By definition, rebound must occur within 3 months of discontinuing antipsoriatic therapy. Rebound is said to occur either when PASI scores reach 125% of baseline or when the patient experiences new generalized pustular, erythrodermic, or more inflammatory psoriasis. Rebound, sometimes with morphology different from the prior disease, may present de novo upon withdrawal of systemic treatments.37 For instance, rebound manifesting as either generalized pustular or erythrodermal flares has also been reported in patients whose cyclosporine treatment was stopped abruptly.38 The biologics etanercept and alefacept have been proposed as transitional therapies in patients who need to be weaned off cyclosporine.39,40

For generalized pustular rebound associated with cyclosporine withdrawal, etanercept48 or, for appropriate patients, methotrexate plus systemic acitretin41 should be considered. Methotrexate plus infliximab has been used successfully for erythroderma associated with cyclosporine withdrawal.42,41
CHAPTER 8 - EXACERBATION AND FLARE OF PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

The severity of the disease, and the recommendations for treating exacerbations, flares, and rebounds can facilitate timely clinical intervention that can induce psoriatic exacerbations, flares, and rebounds should be based on the medical history of the patient, the severity of the disease, and the recommendations outlined below.

Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients who develop new-onset plaque, pustular, or guttate psoriasis while receiving TNF inhibitors for non-dematological conditions, the psoriasis should, if possible, be controlled with topical agents (calcipotriol, corticosteroids, or both) while maintaining TNF therapy (Refs. 10, 14, LoE 3)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Those who do not improve sufficiently with topical therapy may be switched to another biologic (Ref. 10, LoE 3), cyclosporine (Ref. 14, LoE 3), or another systemic or phototherapy (LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>

References

CHAPTER 9: MANAGEMENT OF FACIAL, FLEXURAL, AND GENITAL PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

Introduction

Plaque psoriasis affecting the facial, flexural, and genital (FFG) areas, although pathophysiologically similar to other involved skin, presents a distinct clinical challenge because these areas are at heightened risk of adverse reactions to topical treatment.

Facial psoriasis has been viewed as a rare occurrence and has received little attention clinically as a result. Contrary to this long-held belief, however, facial involvement may affect up to two-thirds of patients with psoriasis.¹

There are three subtypes of facial psoriasis: hairline psoriasis, sebopsoriasis, and true facial psoriasis, of which the last is characterized by a classical overall morphology of chronic plaque psoriasis, with sharply demarcated erythema-squamous plaques. Hairline psoriasis can be grouped with scalp psoriasis (see Chapter 11: Management of scalp psoriasis), while sebopsoriasis is localized in the seborrheic areas (eyebrows and nasolabial fold). Sebopsoriasis has only mild scaling and is less indurated compared with chronic plaque psoriasis.² Patients with facial psoriasis tend to exhibit nail involvement and higher PASI scores on the whole body and the scalp.¹

Flexural involvement may occur without signs of chronic plaque psoriasis at other sites or as part of chronic plaque psoriasis. Skin irritation from rubbing and sweat accumulation is a common problem for these patients. Flexural psoriasis, also called inverse or intertriginous psoriasis, affects the groin, axillae, inframammary region, abdominal body folds, gluteal cleft, perianal region, and retroarticular fold areas. Genital psoriasis, affecting the penis, scrotum, or vulva, is similar in presentation to flexural psoriasis. In all of these areas, the affected skin appears smooth and inflamed, with less scaling than would be seen in typical plaques on the trunk or limbs.² ⁴

Specific metrics for documenting the severity of FFG psoriasis are lacking. In clinical trials, severity has been assessed using the Target Area Score⁵ or the Disease Signs and Symptoms Score, a composite score of the signs and symptoms of erythema, induration, desquamation, and itching in these areas (expressed as a range from 0 to 3).⁶

Facial psoriasis is common in patients with long disease duration or early onset of disease.¹ In addition, patients with facial involvement may have more frequent pruritus, positive family history, and history of Koebner response. Early recognition of facial psoriasis may serve as a marker of severe disease or acute or subacute exacerbations, thus signalling a requirement for more intensive treatment.¹

KEY POINT

A patient-centred treatment approach is particularly important in facial or genital psoriasis, where the total body surface area affected is small but the effects of social isolation and other quality-of-life issues are profound.

Management

Plaque psoriasis generally responds well to treatment with topical corticosteroids. However, skin tends to be thinner in the FFG regions, posing a treatment challenge as these areas are more sensitive to the local side effects of these agents, such as atrophy, telangiectasia, striae formation, bruising, and purpura, as well as to adrenocortical suppression.⁶ ⁷ Furthermore, although calcipotriol has been shown to be efficacious when used for facial and flexural psoriasis⁸ (see below), this vitamin D₃ analogue poses a risk of local skin irritation. Calcipotriol may not be tolerated in the FFG regions, particularly those flexural areas that naturally create some degree of occlusion.⁹ For these reasons, topical calcineurin inhibitors (TCIs) may be an appropriate choice...
for FFG psoriasis and may be supplemented as needed with short-term treatment with moderate-potency topical steroids. The TCIs pimecrolimus and tacrolimus are effective and well tolerated in flexural psoriasis,5,6,10,12 although these agents are not approved for this indication or, indeed, for any form of psoriasis.

Moderately potent corticosteroids may also be used for the acute management of FFG psoriasis, particularly in areas with thicker plaques,7 but long-term use should be avoided when possible. In patients with FFG psoriasis, 0.1% tacrolimus, 1% pimecrolimus, and 0.005% calcipotriol8,13 have all been used for maintenance. These agents may be supplemented for short periods with moderate potency corticosteroids such as 0.1% betamethasone.7

Because it can cause irritation and erythema, calcipotriol is not approved for use on the face or intertriginous areas. Nevertheless, vitamin D3 analogues have been used successfully for facial and flexural psoriasis.8 Likewise, TCIs are not currently indicated for psoriasis, although there is strong evidence that they are effective in FFG psoriasis and avoid the risk of atrophy associated with potent corticosteroids.5,6,11,12 TCIs are widely prescribed by dermatologists for treating psoriasis in the FFG regions.

Because of the risk of social isolation and other profound quality-of-life issues for patients with facial or genital psoriasis, there is a good argument for the use of systemic or biologic therapies if topical treatments fail. However, no comparative studies are available to substantiate the efficacy of methotrexate, cyclosporine, acitretin, or biologics in FFG psoriasis. Little has been published regarding the efficacy of PUVA treatment, although it is claimed to be effective in this context.1 In some instances, however, long-term PUVA treatment has been linked to the appearance of recalcitrant psoriasis of the face and hands,14 a consideration that may apply to any of the FFG areas. Concerns remain regarding the carcinogenicity of PUVA applied to these relatively sensitive areas of the skin.15

Other promising treatments for flexural psoriasis include NB-UVB. Although NB-UVB can be highly effective for flexural psoriasis, use of this therapy is limited by the difficulty of positioning the patient to ensure that skin lesions are exposed during whole-body irradiation.4

In the past, low-dose anthralin treatment and coal tar were used routinely for facial and flexural psoriasis. The side effects of staining, stinging, and irritation seen with this treatment make these options outdated.3

Management of FFG psoriasis poses a unique treatment challenge for physicians. Treatment strategies for patients with this indication should be tailored individually to suit each patient and should take into consideration the recommendations listed here.

Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In moderate flexural psoriasis, topical corticosteroids such as 0.1% betamethasone may be used on an occasional or intermittent basis (Ref. 7, LoE 1+)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Topical calcineurin inhibitors (0.1% tacrolimus ointment or 1% pimecrolimus cream) may be used for facial, flexural, or genital areas (Ref. 5, LoE 1+; Ref. 6, LoE 1+; Refs. 11, 12 LoE 2+)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Mild or moderate potency corticosteroids may also be used on an occasional or intermittent basis to treat facial and genital psoriasis (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>In moderate to severe facial, flexural, and genital disease, stronger corticosteroids may be applied to address non-responsive psoriasis or acute flares in these areas (Refs. 16, 17, LoE 2–)</td>
<td>Grade C</td>
</tr>
<tr>
<td>Accessible flexural areas may be treated with whole-body NB-UVB (Ref. 4, LoE 3)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>
References

CHAPTER 10: MANAGEMENT OF NAIL PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

Nail psoriasis is among the most challenging manifestations of psoriasis, in part due to the challenge of drug delivery around and beneath the nail plate. Because of the paucity of good clinical data, evidence-based guidance is particularly difficult to develop for this manifestation of psoriasis. Nail psoriasis is nevertheless worthy of a clinician’s treatment efforts because, quite apart from the psychosocial sequelae of disfigured nails, it causes significant pain and disability. A survey from the Netherlands reported that 93% of 1728 patients considered nail psoriasis to be a “major problem”, with 52% describing pain as a symptom and 58% saying that it interfered with daily activities.¹ Nail involvement is more common in patients with psoriatic arthritis.² In patients with no diagnosis of psoriatic arthritis, 39–46% of adults²,³ and 38% of children⁴ are reported to have nail involvement, as compared with 83–100% of psoriatic arthritis patients.²,³,⁵

Presentation and evaluation of nail psoriasis

The nail unit comprises the nail plate and four epithelial structures: the proximal nail fold (a continuation of the digital skin that folds underneath itself to protect the matrix), the matrix (from which the nail plate arises), the nail bed (the epithelium under the nail plate), and the hyponychium (the epithelium underneath the free edge of the nail plate). Each of these epithelial structures can be affected by psoriasis over differing time scales, which accounts for the variability of the clinical presentation of nail psoriasis. Clinical studies tend to focus on nail matrix psoriasis and nail bed psoriasis, each of which has four main characteristics, as shown in Table 1.

Table 1. Manifestations of nail psoriasis

<table>
<thead>
<tr>
<th>Nail tissue involved</th>
<th>Clinical feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nail matrix</td>
<td>Pitting (small depressions in the uppermost layers of the nail plate)</td>
</tr>
<tr>
<td></td>
<td>Leukonychia (smooth-surfaced lesions giving the nail a whitish appearance)</td>
</tr>
<tr>
<td></td>
<td>Red spots in the lunula</td>
</tr>
<tr>
<td></td>
<td>Nail plate crumbling</td>
</tr>
<tr>
<td>Nail bed</td>
<td>Subungual hyperkeratosis (‘nail thickening’, with hyperproliferation of keratinocytes underneath the nail plate)</td>
</tr>
<tr>
<td></td>
<td>Onycholysis (separation of the nail plate and nail bed)</td>
</tr>
<tr>
<td></td>
<td>Oil-drop or salmon-spot discoloration (serum-filled lesions within the nail bed)</td>
</tr>
<tr>
<td></td>
<td>Splinter hemorrhages (minute lesions along the junction of the dermis and epidermis)</td>
</tr>
</tbody>
</table>
Until recently, there was no standardized method for assessing the severity of nail psoriasis, which prevented any straightforward comparison of therapies. Clinical trials have used a variety of metrics, from qualitative descriptors to objective numerical scales such as the Psoriasis Nail Severity Score (PNSS), the Nail Area Severity (NAS) index, or the Nail Psoriasis Severity Index (NAPSI). The NAPSI requires physicians to score each nail based on the nail matrix and nail bed parameters described in Table 1.

KEY POINT

Nail psoriasis represents a disproportionately large challenge for patients and physicians, in view of the small body surface area involved. Although nail psoriasis can profoundly disrupt patients’ lives, the evidence supporting most treatments is low-level. Adherence is also an issue since nail treatment is long-term, frequently ineffective, and sometimes painful. Patient preferences and quality-of-life considerations are thus central to the management of nail psoriasis.

Management of nail psoriasis

Although there are many effective treatment options for skin psoriasis, the choices are more limited for nail psoriasis (Table 2). The historically popular modalities are often tedious or painful to administer and of limited efficacy, with short-lived remissions.

Nail psoriasis is sometimes confused with onychomycosis; indeed, the two conditions may occur concomitantly, and it has been suggested that individuals with psoriasis, and specifically with nail involvement, are at elevated risk of toenail onychomycosis. Laboratory analysis of nail scrapings for fungal cells and/or nail biopsy can be helpful to clarify the diagnosis of nail abnormalities.

Because of the clinical variability of nail psoriasis and differences among patients’ life circumstances, it is crucial to tailor the treatment plan as much as possible to relieve any emotional or physical distress, or actual physical disability, that the patient experiences.

Topical therapies

The available data on topical therapies largely focuses on improvements in subungual hyperkeratosis and onycholysis; the benefit of these therapies for other manifestations of nail psoriasis is still unclear, although the available data are presented below.

Topical steroids are only marginally effective in monotherapy for nail psoriasis, and there is significant regression once therapy is discontinued. Steroid combinations give moderate relief after several months of treatment. Topical application of salicylic acid plus betamethasone dipropionate (see Chapter 5: Management of mild plaque psoriasis) reduced hyperkeratosis by approximately 50% over 5 months in responders in a randomized controlled trial; similar results were seen for calcipotriol (see below).

Topical 5-fluorouracil was no more effective than a penetration-enhancer vehicle (urea and propylene glycol) in a double-blind study over 8 weeks, with only marginal benefit at 12 and 16 weeks on pitting and onycholysis.

Topical tazarotene was ineffective for hyperkeratosis and conferred only modest improvements in pitting and onycholysis over 6 months in a randomized, placebo-controlled trial. Better results were seen for hyperkeratosis with tazarotene in a small, open, prospective trial; onycholysis, pitting, and oil spots/salmon patches also improved. Tazarotene was slightly more effective for hyperkeratosis than clobetasol cream 0.05% in a small, randomized, double-blind trial. Significant loss of control occurred once the treatments were discontinued.

Topical calcipotriol had moderate success for hyperkeratosis and onycholysis over 3–6 months in several case series and reduced hyperkeratosis by 49% and 41% (fingers and toes) in a small, randomized, controlled trial over 5 months. In this trial, and as discussed above, topical calcipotriol was as effective as betamethasone dipropionate plus salicylic acid cream.

The use of occlusive dressings is surprisingly rare in studies of nail psoriasis, especially as it appears to greatly enhance the effectiveness of therapy. Scher et al. (2001) found that tazarotene was only effective for pitting when occlusion was used.
and that onycholysis under occlusion responded within 4 weeks instead of the 24 weeks seen in non-occluded nails.

Safety and tolerability are major considerations with topicals, in view of the length of treatment required, the need for daily application, and the modest results. The potential side effects of long-term therapy with potent steroids are well documented, including irreversible local effects such as skin atrophy, acroatrophy (‘disappearing digit’), stria formation, and telangiectasia. However, in the study on salicylic acid plus betamethasone dipropionate described above, the only adverse events reported were three cases of erythema.

The administration of potent corticosteroids under occlusion raises concerns about potentiating the local adverse effects of these drugs. However, one study in plaque psoriasis patients, comparing week-long administration of clobetasol propionate under occlusion with twice-daily application of the same corticosteroid without occlusion, offers some support for the use of occlusive dressings. The authors found no evidence of clinical atrophy after up to 6 weeks of treatment in either treatment group, although the patients receiving treatment under occlusion experienced more rapid clearance. No such safety or efficacy data are available concerning the use of corticosteroids under occlusive dressing in nail psoriasis.

As in other indications for which calcipotriol is used, the most common adverse reactions for this topical treatment in nail psoriasis are skin irritation and burning. Likewise, tazarotene under occlusion was reported to cause peeling, irritation of distant skin, paronychia, and erythema. No adverse events were reported in the single trial of topical cyclosporine solution.

Intralesional therapies

Although commonly viewed as the standard of care for psoriatic nails, intralesional therapy suffers from a lack of high-quality supporting data. It involves introducing small quantities of corticosteroid (triamcinolone acetonide) into the affected tissue, either by needle or by high-pressure jet. High-pressure devices appeared quite successful for nail matrix disease in observational studies in the 1970s, but they have largely fallen out of favour in the post-HIV era due to the risk of blood splashback. Open-label studies suggest that monthly or ad hoc injections of triamcinolone acetonide are moderately effective overall and can be particularly effective for nail bed manifestations such as hyperkeratosis.

The main disadvantage of intralesional injections is that they are very painful; Grover et al. (2005) found that one-third of the 50 patients discontinued therapy due to pain. Prior local ring-block anesthesia is unacceptable to many patients since it involves further needle pricks. Patients should therefore be counselled about the pain associated with the procedure, with and without anesthesia, and their preferences should be respected. Other adverse events included proximal nail fold atrophy, subungual hematoma, and short-term paresthesia.

Radiation and phototherapy

Several radiation treatments and phototherapies have been tested on psoriatic nails, but high-quality evidence remains lacking; the small, prospective trials available demonstrated variable efficacy and lengths of remission. Oral PUVA (two to three times a week followed by weekly maintenance treatment) was effective for nail bed disease (hyperkeratosis and onycholysis) but showed only modest effects for nail matrix disease. Even at UVA doses predicted to be too low to penetrate the nail plate, PUVA-paint treatment directed at the nail fold can be effective in treating onycholysis. PUVA is contraindicated in patients with a history of photodermatoses, photosensitive disease, cutaneous malignancies, or immunosuppression.

In addition to PUVA treatment, other radiation-based approaches such as electron beam therapy and superficial radiotherapy have been used successfully to treat nail psoriasis.

Systemic therapies

Systemic therapies for nail psoriasis have usually been tested in the context of broader treatment of skin psoriasis. Neither oral cyclosporine nor the retinoid etretinate significantly improved nail disease from baseline in a large, randomized trial. However, cyclosporine did significantly improve nail symptoms in the subset of patients whose...
skin symptoms also responded to cyclosporine therapy. A case-control study found that oral cyclosporine achieved nail improvements in 48% of patients over 3 months; combination oral cyclosporine and topical calcipotriol increased success to 79%. Hydroxyurea, onycholysis, and pitting showed the greatest improvement with the combination treatment.

The effectiveness of the biologic therapies for nail psoriasis has recently started to emerge from subanalyses of pivotal trials in skin disease as well as smaller pilot studies. It appears that patients on a biologic for their skin psoriasis may see nail benefits as well. In a large, multicentre, placebo-controlled trial, infliximab achieved complete clearance of the worst-affected nail in over half of patients within a year, assessed by the NAPSI, with improvements seen by 10 weeks and superior scores for nail bed disease versus those for the nail matrix. A small open-label study achieved remission (defined as ≥ 75% improvement in NAPSI score) in all patients with moderately to severely affected nails by 22 weeks. Alefacept has been tested in two small open-label studies in patients with moderate to severe nail psoriasis; it reduced the NAPSI score in three out of eight patients in one study and by 39% overall in the other study.

Table 2. Therapeutic options for managing nail psoriasis

<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Important contraindications and therapeutic considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical corticosteroids</td>
<td>Topical corticosteroids appear to be moderately effective for hyperkeratosis in combination with calcipotriol or salicylic acid, but there is little evidence to support their effectiveness for other nail manifestations or as monotherapy. Long-term use may be associated with tachyphylaxis and increases the risk of side effects such as skin atrophy, acroatrophies, and telangiectasias.</td>
</tr>
<tr>
<td>Injected corticosteroids</td>
<td>IntraleSIONal injections of triamcinolone acetonide can be moderately effective for all lesion types, but the procedure is painful, and thus adherence is an issue.</td>
</tr>
<tr>
<td>Calcipotriol</td>
<td>Topical calcipotriol appears to be as effective as a steroid plus salicylic acid combination for hyperkeratosis and onycholysis. Adverse events include skin irritation and burning.</td>
</tr>
<tr>
<td>Phototherapy</td>
<td>Phototherapy for psoriatic nails still suffers from a lack of convincing evidence, although small studies suggest that some patients may benefit. Patients may find the treatment schedule onerous for only modest return and short remission.</td>
</tr>
<tr>
<td>Topical tazarotene</td>
<td>Although open-label studies have shown improvements in hyperkeratosis with topical tazarotene, it had no impact on hyperkeratosis in a randomized controlled trial and only modest effects on pitting and onycholysis.</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>Oral cyclosporine as monotherapy has shown only modest results in nail psoriasis. The addition of topical calcipotriol to oral cyclosporine appears to improve efficacy and delay relapse.</td>
</tr>
<tr>
<td>Biologic agents</td>
<td>The small but growing body of data on the biologics suggests that patients on these therapies for skin involvement may also achieve nail benefits. Infliximab achieved complete clearance in over half of all patients with moderate to severe nail involvement in a large trial. In open-label studies, alefacept showed promising results in patients with moderate to severe nail involvement.</td>
</tr>
</tbody>
</table>
Nail psoriasis represents a disproportionately large challenge for patients and physicians, in view of the small body surface area involved. Although nail psoriasis can profoundly disrupt patients’ lives, evidence-based management decisions currently rely on open-label studies with differing endpoints and uncertain baseline diagnoses. Moreover, adherence is an issue since the available therapies are necessarily long-term, frequently ineffective and sometimes painful. Patient preferences and quality-of-life considerations are thus central to the management of nail psoriasis.

Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For moderate to severe nail psoriasis or mild nail psoriasis that affects patient quality of life, appropriate first-line treatments include either topical calcipotriol or topical betamethasone dipropionate plus salicylic acid (Ref. 12, LoE 1--; Ref. 17, LoE 3; Ref. 16, LoE 3)</td>
<td>Grade C</td>
</tr>
<tr>
<td>Other topical steroid monotherapy, or calcipotriol plus betamethasone, may also be used (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>As a second-line option, topical tazarotene may be used (Refs. 11, 14, LoE 1--; Ref. 15, LoE 2--)</td>
<td>Grade C</td>
</tr>
<tr>
<td>For severe nail psoriasis with hyperkeratosis as the predominant feature, the physician may also consider intralesional injection of triamcinolone acetonide (≥ 2.5 mg/mL) into the proximal nail fold, repeated once after 2 months if no response (Refs. 24, 25, LoE 2--)</td>
<td>Grade C</td>
</tr>
<tr>
<td>Patients with isolated nail psoriasis should not ordinarily be considered for systemic or phototherapy (LoE 4). However, in appropriate patients with other psoriatic manifestations, the presence of severe or intractable nail involvement may be a contributing factor in the decision to use any of the following to treat plaque psoriasis affecting other areas of the skin:</td>
<td>Grade D</td>
</tr>
<tr>
<td>• Infliximab (Refs. 38, 39, LoE 1++; Ref. 35, LoE 2--)</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Alefacept (Refs. 36, 37, LoE 3)</td>
<td>Grade D</td>
</tr>
<tr>
<td>• Oral cyclosporine plus topical calcipotriol (Ref. 34, LoE 2+)</td>
<td>Grade C</td>
</tr>
<tr>
<td>• Oral cyclosporine alone in patients with a history of vigorous response to this treatment for plaque psoriasis (Ref. 33, LoE 1+)</td>
<td>Grade B</td>
</tr>
</tbody>
</table>
CHAPTER 10 - MANAGEMENT OF NAIL PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

References

20. Léandri T, Gobbi P, Cappello G. Treatment of psoriatic nails with topical 5-azacytidine cream (5-aza-C) vs. 5-fluorouracil cream 0.1% vs. clobetasol propionate cream: A double-blind study. Dermatol Online J 2008;14:5.

CHAPTER 11: MANAGEMENT OF SCALP PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

Symptoms such as itching and scaling in the scalp occur in up to 86% of individuals with plaque psoriasis, causing significant psychological and social distress.1,2 Indeed, the psychosocial effects due to scalp psoriasis are greater than with psoriasis at other body sites.2

Clinically, psoriatic lesions of the scalp appear as sharply demarcated erythematous-squamous plaques with thick silver-white scaling. They may occur in the area above the ears or the occipital region. Involvement of the frontal scalp margin is also common, but lesions at this site are usually less scaly. Permanent hair loss is uncommon. Psoriasis of the scalp superficially resembles seborrheic dermatitis, and it is often difficult to differentiate between the two.

Scalp psoriasis is typically classified as mild, moderate, or severe. In clinical trials, scales such as the Psoriasis Area and Severity Index (PASI), the Psoriasis Scalp Severity Index (PSSI), the Global Severity Score (GSS), and the Total Severity Score (TSS) have been used for assessing the severity of scalp psoriasis. The PSSI is a composite score derived from the sum scores for erythema, induration, and desquamation multiplied by a score for the extent of scalp area involved (range 0–72).3

KEY POINT

Scalp psoriasis can cause significant psychological and social distress. Although physicians have a choice of several relatively effective topical therapies, treatment success is limited by the presence of hair, as well as by patients’ unwillingness to use therapies they find cosmetically unsatisfactory or inconvenient.

Scalp psoriasis is commonly treated with topical agents. However, the scalp surface and presence of hair make application of many topical products to the scalp difficult. Traditionally, scalp psoriasis has been treated with topical coal tar therapy and anthralin; treatment adherence with these approaches may be limited by the products’ unpleasant smell and ability to stain skin and clothes. Indeed, vehicle formulations of topical treatments are an important factor in patient adherence.4 Topical corticosteroids, the mainstay of scalp psoriasis management, are therefore available as lotions, solutions, gels, sprays, and shampoos. Other useful adjunct treatments for scalp psoriasis include: gels and shampoos containing refined coal tar in solution; anthralin in an emulsifying oil base; and 5% glycolic and 5% lactic acid scalp lotion plus betamethasone scalp application.5,7

Topical application of calcipotriol and phototherapy with UVB can be effective in the treatment of scalp psoriasis, especially when used together.3 Since hair is a barrier to effective UV phototherapy, it may be necessary to use a broadband UVB comb to deliver phototherapy to the scalp.8 This comb may be suggested for home use by suitable patients with otherwise intractable scalp psoriasis.

In patients with extensive plaque psoriasis of the body or recalcitrant psoriasis, systemic treatments9 with methotrexate, cyclosporine, acitretin, and biologics such as etanercept,10 infliximab, and alefacept have all proved beneficial. These treatments are not commonly used for treating isolated scalp psoriasis but, when used for controlling plaque psoriasis elsewhere on the body, they may provide the added benefit of improving scalp psoriasis. Open-label studies in patients with scalp psoriasis suggest that systemic therapies such as cyclosporine might benefit patients who have failed intensive topical therapy.
Scalp psoriasis remains a therapeutic challenge. The choice of antipsoriatic agents should be based on individual patient preferences and characteristics, considering the factors outlined in Table 1.

Table 1. Topical and phototherapeutic options for managing scalp psoriasis

<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Important contraindications and therapeutic considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>Although topical corticosteroids are widely used, limited clinical data are available to support their efficacy and safety during long-term use. Corticosteroids are available as lotions and in other formulations designed for scalp application. Foam formulations,(^{10-12}) not presently available in Canada, have been marketed elsewhere for scalp psoriasis.</td>
</tr>
<tr>
<td>Vitamin D3 derivatives</td>
<td>An open-label study lasting 52 weeks by Barnes et al.(^{13}) suggests that calcipotriol can be safely used in the long-term treatment for scalp psoriasis. This study found no significant changes in mean serum calcium, parathormone, or urinary calcium/creatinine ratio. Vitamin D3 derivatives are contraindicated in patients with abnormal calcium metabolism or with severe hepatic or renal disease.</td>
</tr>
<tr>
<td>Coal tar</td>
<td>Coal tar has an unpleasant smell and is difficult to apply to the scalp, although shampoos, oils, and other acceptable formulations are available. Coal tar is contraindicated in women who are pregnant or nursing.</td>
</tr>
<tr>
<td>Anthralin</td>
<td>Anthralin is a keratolytic agent used in the treatment of stable plaque psoriasis.(^{1}) Anthralin may induce temporary discolouration of hair and considerable irritation in plaques and surrounding healthy skin. Commercial formulations of anthralin are not currently available in Canada.</td>
</tr>
<tr>
<td>Keratolytics</td>
<td>5–10% salicylic acid has a pronounced keratolytic effect and is useful for removing thick psoriatic scales on the scalp. When combined with a topical corticosteroid, salicylic acid enhances skin penetration by the steroid.(^{14}) Anthralin in a urea base is keratolytic as well and is useful for the rapid removal of thick scale(^{15}).</td>
</tr>
<tr>
<td>UVB phototherapy</td>
<td>Since hair blocks UV light treatments from reaching the scalp, better results can be achieved with conventional UV units if hair is parted in many rows or the head is shaved. UV therapy is contraindicated in patients with a history of photodermatoses, photosensitive diseases, cutaneous malignancies, or immunosuppression.</td>
</tr>
<tr>
<td>Retinoids</td>
<td>Tazarotene has been successfully used in the treatment of plaque-type psoriasis on the body. Currently there are no published clinical data on its efficacy in the treatment of plaque psoriasis of the scalp. Like other retinoids, tazarotene is teratogenic; while not strictly contraindicated for topical use in women of reproductive age, it is not recommended for use during pregnancy.</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately potent to very potent topical corticosteroids and calcipotriol are all appropriate topical treatments for mild to moderate scalp psoriasis. Suitable agents include:</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Betamethasone dipropionate lotion, clobetasol propionate solution, betamethasone valerate solution, or calcipotriol solution (Ref. 16, 17, LoE 1++; Refs. 18, 19, LoE 1+)</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Clobetasol propionate shampoo (Ref. 20, LoE 1++; Ref. 21, LoE 1+)</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Amcinonide lotion or fluocinonide (Ref. 22, LoE 1++; Ref. 23, LoE 1+)</td>
<td>Grade A</td>
</tr>
<tr>
<td>• Calcipotriol solution (Refs. 24, 25, LoE 1+)</td>
<td>Grade B</td>
</tr>
<tr>
<td>In severe cases, systemic therapies may be considered. These include:</td>
<td></td>
</tr>
<tr>
<td>• Traditional agents (methotrexate, cyclosporine, or, for suitable patients, acitretin) (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>• The biologic agents etanercept (Ref. 10, LoE 1–) and alefacept (Ref. 26, LoE 2–)</td>
<td>Grade C</td>
</tr>
<tr>
<td>• Other biologic agents (LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>

Note added in proof: In November 2008, Health Canada approved a new product containing calcipotriol and betamethasone dipropionate in a gel formulation. This combination product is indicated for topical treatment of moderate to severe scalp psoriasis.

References

12. Bergstrom KG, Arambula K, Kimball AB. Medication formulation affects quality of life: a randomized single-blind study of clobetasol propionate foam 0.05% compared with a combined program of clobetasol cream 0.05% and solution 0.05% for the treatment of psoriasis. Cutis 2003;72:407–11.
Psoriasis manifests on the palms and soles in up to 17% of patients, taking either of two forms, which are sometimes observed in the same individual. One type is localized plaque psoriasis, which is similar to psoriasis vulgaris present on the rest of the body. Lesions typically are sharply demarcated, erythematous, and have overlying, very thick scale. Delayed-type hypersensitivity to contact allergens and response to physical trauma (the Koebner phenomenon) are postulated to be precipitating factors for plaque-type palmoplantar psoriasis.

The other type of psoriasis that affects palms and soles is palmoplantar pustular psoriasis (PPP), a chronic, relapsing disease that is often refractory to therapy. It is characterized by erythematous plaques studded with sterile, intraepidermal pustules that are caused by massive migration of neutrophils. Lesions may be painful and may develop fissures.

KEY POINT

Palmoplantar psoriasis is significantly disabling, especially when severe, since patients lose the effective use of their hands and/or feet. There are two types of palmoplantar psoriasis: localized plaque psoriasis and palmoplantar pustular psoriasis. Separate treatment recommendations have been provided for each.

Approximately 24% of individuals with PPP experience plaque psoriasis, and between 10% and 25% have a family history of psoriasis among first-degree relatives. Although individuals with plaque psoriasis are more susceptible to pustular reactions of the palms and soles, PPP is suspected to be a genetically distinct condition that can occur either independently or comorbidly with plaque psoriasis. The demographics of PPP are also markedly different from those of chronic plaque psoriasis. PPP primarily affects women, presents most commonly between the ages of 20 and 60 years, and has a very striking association with smoking and with lithium therapy. Treatment with TNF inhibitors such as infliximab and etanercept can induce pustular flares, even in individuals with no prior history of psoriasis (see Chapter 8: Exacerbation and flare of psoriasis). In clinical trials, severity of plaque-type palmoplantar psoriasis is typically evaluated using a modified PASI score (range, 0–60 points). The score reflects the proportion of palm and sole area involved and the severity of erythema. For PPP, a severity index is determined by summing the scores for erythema, scaling, pustulation, and infiltration separately.

Palmoplantar psoriasis is a therapeutic challenge and the choice of antipsoriatic agents should be based on the individual patient and on the factors outlined in Table 1, as well as the recommendations listed below.
Table 1. Therapeutic options for the control of palmoplantar psoriasis

<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Important contraindications and therapeutic considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>Although they are commonly used as first-line therapy, there is little clinical evidence supporting the efficacy of topical corticosteroids in the treatment of either plaque-type palmoplantar psoriasis or PPP. Triamcinolone acetonide and clobetasol propionate under hydrocolloid occlusion have been used with some success in the treatment of PPP.</td>
</tr>
<tr>
<td>Coal tar</td>
<td>Traditionally, coal tar has been used in the treatment of plaque psoriasis. Patient preference for coal tar is low because of its smell and the difficulty in application. Use of coal tar in an ointment base at night and covering hands and feet with gloves and socks after application of the ointment, however, can be an acceptable modality of treatment. Coal tar is contraindicated in women who are pregnant or nursing. Coal tar is also a carcinogen and the benefits and risks of using it in children should be carefully evaluated. There is no evidence for its effectiveness in PPP.</td>
</tr>
<tr>
<td>Vitamin D3 derivatives</td>
<td>Topical calcipotriol is effective either as a non-occlusive twice-daily application or as an occlusive twice-weekly application for plaque-type palmoplantar psoriasis. There is no clinical evidence for its effectiveness in PPP, although it is possible that some individuals with PPP were among the responders to calcipotriol described in this same study.</td>
</tr>
<tr>
<td>Phototherapy and photochemotherapy</td>
<td>Soak, emulsion, gel, and cream PUVA limit photosensitization to the affected skin areas and avoid the typical side effects of systematically administered psoralens. The efficacy and safety of narrowband ultraviolet B (NB-UVB) phototherapy for the treatment of palmoplantar psoriasis is under investigation.</td>
</tr>
<tr>
<td>Retinoids</td>
<td>Oral retinoids have been used with a degree of success in the treatment of PPP, especially when combined with PUVA therapy (RePUVA). RePUVA with acitretin (currently the only oral retinoid approved for use in psoriasis in Canada) has not been studied systematically for palmo-plantar psoriasis. Oral retinoids are contraindicated in women of childbearing potential unless suitable contraception is used.</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Methotrexate is an effective treatment for acute or localized pustular psoriasis or extensive psoriasis that is unresponsive to less toxic therapies. Methotrexate is contraindicated in patients with liver and kidney disease, as well as in pregnancy.</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>In patients with PPP, treatment with cyclosporine brings about significant reduction in pustule formation, as compared with placebo.</td>
</tr>
<tr>
<td>Alefacept</td>
<td>Alefacept is efficacious in the treatment of palmoplantar psoriasis. This biologic agent is specifically approved for use in plaque-type, rather than pustular, psoriasis.</td>
</tr>
</tbody>
</table>
Recommendations

Recommendation & level of evidence

<table>
<thead>
<tr>
<th>First-line options for treating patients with plaque-type palmoplantar psoriasis include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Topical coal tar and salicylic acid under occlusion (Ref. 13, LoE 2+)</td>
</tr>
<tr>
<td>• Topical PUVA, including paint (Ref. 16, LoE 2++) and soak PUVA (Ref. 15, LoE 2++; Ref. 24, LoE 2+)</td>
</tr>
<tr>
<td>• Topical calcipotriol, with or without occlusion (Ref. 14, LoE 2–)</td>
</tr>
</tbody>
</table>

Grade B

| Other options for which weaker evidence is available may also be considered, including moderate to ultrapotent corticosteroids (alone or in combination with calcipotriol), tazarotene, topical calcineurin inhibitors, NB-UVB, and intralesional triamcinolone acetonide injection (LoE 4) |

Grade C

<table>
<thead>
<tr>
<th>As second-line options, the physician may use systemic treatments, including:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alefacept (Ref. 23, LoE 3)</td>
</tr>
<tr>
<td>• Acitretin (LoE 4)</td>
</tr>
<tr>
<td>• Methotrexate (LoE 4)</td>
</tr>
<tr>
<td>• Cyclosporine (LoE 4)</td>
</tr>
</tbody>
</table>

Grade D

| First-line treatment options for PPP include application of triamcinolone acetonide or clobetasol propionate under occlusion (Ref. 11, LoE 2+) |

Grade C

| As second-line options in suitable patients with PPP, the physician may use systemic agents such as cyclosporine (Ref. 25, LoE 2+) or alefacept (Ref. 26, LoE 2+) |

Grade C

| Intralesional triamcinolone acetonide injection and RePUVA with acitretin may also be considered for suitable patients (Refs. 21, 27, LoE 3) |

Grade D

References

CHAPTER 13: SOCIAL AND PSYCHOLOGICAL ASPECTS OF PSORIASIS

Canadian Guidelines for the Management of Plaque Psoriasis

Management of psoriasis has historically attributed more value to physical sequelae, and response to therapy and has tended to overlook the psychological aspects of the disease. This bias may have been inadvertently perpetuated by the medical and research community, as illustrated by the fact that, between 1977 and 2000, only one out of a total of 249 randomized controlled trials assessed health-related quality of life (HRQL) in patients with psoriasis.1 However, growing clinical experience and published literature suggest that the disease burden of psoriasis extends far beyond the physical symptoms experienced by patients, to affect virtually all aspects of HRQL.

Multiple studies have demonstrated that patients with psoriasis perceive themselves to have poorer health and overall lower HRQL than the general population.2-7 In one notable example, Rapp et al.8 noted that patients with psoriasis reported a decrement in physical and mental function that was comparable to that reported by patients with cancer, arthritis, hypertension, heart disease, diabetes, and depression. In another study,9 psoriasis patients with other chronic comorbidities, such as asthma, diabetes, or bronchitis, reported that they regarded these diseases as “the same or better”, relative to living with psoriasis. These data stand in sharp contrast to the misconception held by the general population and medical community that psoriasis is somehow less serious than other, non-dermatological illnesses.

As a result of these and other studies, Krueger et al.10 suggested in a position paper that the main endpoint of psoriasis treatment should focus on HRQL, rather than specific clinical parameters of response to treatment, such as BSA or PASI scores.

KEY POINT

Management of psoriasis has historically attributed more value to physical sequelae and response to therapy and has tended to overlook the psychological aspects of the disease. However, growing clinical experience and published literature suggest that the disease burden of psoriasis extends far beyond the physical symptoms experienced by patients, to affect virtually all aspects of HRQL.

Effect of psoriasis on psychosocial health

Psoriasis and the therapies used to control it influence multiple aspects of psychosocial health. Various studies have documented that rates of depression are increased in the population of patients with psoriasis, even when disease remission is achieved.2,11-14 People with psoriasis also suffer from body cathexis problems,12 as well as higher rates of both passive and active suicidal ideation.13,15

Patients with psoriasis frequently report poor self-esteem and high levels of psychological stress. For example, patients often feel self-conscious, helpless, embarrassed, angry, and frustrated about their disease.6,16,17 Those with more severe disease or with involvement of a more visible area (e.g., face, scalp) or highly utilized area of the body (e.g., hands) may suffer disproportionately from these problems.18 These psychological sequelae have a pervasive effect on social functioning, affecting interpersonal relationships19 and productivity at work or school.20

While impaired social functioning in patients with psoriasis may arise from internal factors (e.g., secondary psychological morbidities, poor self-esteem), external factors such as stigmatization and social rejection also play a role.21-24 For example, in
a study of more than 1300 patients with moderate to severe psoriasis, 26% of subjects reported that during the previous month they experienced an episode in which a person made a conscious effort not to touch them, even on body areas unaffected by psoriasis.25 Even more striking was the finding that 19% of patients with moderate to severe psoriasis had experienced instances of gross social rejection, including being asked to leave a location (e.g., gym, swimming pool) due to their disease.26 As a result, psoriasis patients may attempt to avoid interpersonal situations or leisure activities where they might encounter rejection, further reducing their social and occupational opportunities. These feelings of social rejection, in turn, correlate with higher rates of psychologic morbidity, including depression.25

While men and women are affected equally by the impact that the disease has on appearance and socialization, the effect may be more pronounced in adolescents and young adults, as the stigma of having psoriasis exerts its greatest influence when patients are establishing their body image, social networks, and careers.27

Psoriasis is associated with a decrease in sexual functioning in a significant proportion of patients.28,29 In one case series, 41% of patients reported a decline in sexual activity since being diagnosed with psoriasis, with 60% of those attributing it to the physical manifestations of their psoriasis.28 Physical symptoms of psoriasis (e.g., scaling and pruritus and, for those with psoriatic arthritis, joint pain), as well as associated depression also negatively affected sexual function.28

Finally, psoriasis can have significant financial impact. Apart from direct costs related to treatment of the disease itself, 59% of working patients reported that they lost or were unable to find work for certain periods within the preceding year, due to the effects of psoriasis or its treatment.9,30

Effect of psychological health on psoriasis

Studies demonstrating that poor psychosocial health is an independent risk factor for increased manifestations or flares of psoriatic disease support the notion of a reciprocal relationship between psoriasis disease activity and psychosocial health.31,32 For example, Gupta et al.32 reported that the presence of depression in psoriasis can modulate itch perception and exacerbate pruritus. Further, about 40% of psoriatic patients report that psychosocial stress significantly exacerbates their condition,31 and patients who have high levels of psychologic stress during remission periods experience significantly more flares of psoriatic disease when compared with those with low levels of psychologic stress, a finding that has been supported by other investigators.33,34 Consoli et al.34 recently reported that low levels of emotional awareness predict a better response to dermatological treatment in patients with psoriasis, which suggests that patient awareness of the negative psychosocial implications of psoriasis can interfere with clinical response to treatment. Finally, interventions to address psychosocial health may result in improvements in clinical indicators of psoriatic disease and response to treatment.35

The mechanism by which psychosocial health may modulate psoriatic disease activity remains unclear; investigators have proposed both direct biologic mechanisms (e.g., effects on autoimmunity) and indirect mechanisms (e.g., adverse effect on treatment adherence).36,37 For example, Schmid-Ott et al.38 demonstrated a significant stress-induced increase of certain cytolytic T cells in the blood of psoriasis patients, but not in healthy controls. Other investigators have reported that psychic stress potentiates psoriatic disease activity via an increase in neuropeptide content and a decrease in neuropeptide-degrading enzyme activity in mast cells39 or by modulating the neurohormonal axis.36

Alternatively, psychologic aspects can modify the course of psoriasis by interfering with treatment adherence,3,40,41 a finding that has been widely validated in numerous other disease states. In particular, feeling stigmatized can lead to treatment non-adherence and worsening of psoriasis.21

Psychosocial assessment of patients with psoriasis

Clinical severity of psoriasis based on affected body surface area or other scales does not always correlate with patient-reported degrees of impairment.7,42,43 Further, physicians frequently underestimate the degree of psychological and social morbidity associated with the disease.6,44,45
Conflicts between the clinical severity rating and the actual disability experienced by the patient can be reconciled if the psychosocial impact of psoriasis is assessed during routine clinical evaluation.

Various methods have been used to quantify the psychosocial impact of psoriasis, including the Skindex-29, Psoriasis Disability Index (PDI), Dermatology Life Quality Index (DLQI), Psoriasis Quality of Life Questionnaire (PQLQ), Salford Psoriasis Index (SPI), Hospital Anxiety and Depression Scale (HADS), Illness Perception Questionnaire (ILQ), and Short-Form-36 (SF-36) Health Survey. Both et al., comparing the utility of these various scales for dermatological disease, recommend use of the Skindex-29 and SF-36, both of which have been widely applied in psoriasis studies. Regardless, there is general consensus that some form of psychosocial assessment should be pursued in the routine course of treatment and that these more formal assessments may be useful in situations in which patients have self-reported dissatisfaction in treatment response, despite improvement in clinical parameters of disease activity.

As with the comprehensive treatment of any patient with a chronic medical condition, screening psoriasis patients for clinical depression is appropriate and can be achieved within the constraints of the typical clinical encounter.

Interventions

Interventions to address psychosocial factors (e.g., education, optimization of treatment protocols, and treatment of depression) may result in improvements in HRQL as well as in clinical endpoints of psoriatic disease.

While systematic studies to investigate the efficacy of psychologic interventions are relatively sparse, several studies provide proof of principle. For example, Kabat-Zinn et al. reported that use of concomitant meditation therapy reduced the duration required for a predetermined clinical response to either PUVA or UVB therapy by 30–35%. Other investigators have reported positive results in attenuating psoriatic disease activity in response to hypnosis and psychotherapy. Further, Fortune et al. advocated the use of a comprehensive cognitive behavioural program including a structured educational program. Conversely, one study has suggested that treatment with the biologic agent etanercept can improve the psychological symptoms associated with psoriasis and psoriatic arthritis. Improvement correlated significantly between various measures of depression, quality of life, and fatigue; surprisingly, the effect on depression did not correlate significantly with control of skin symptoms, as measured on the PASI scale.

Treatment of depression and other psychological morbidities associated with psoriasis may require psychotherapy, medical treatment, or referral to a psychiatrist for further management.

Some of the current therapies, by virtue of the fact that their administration may be impractical or associated with toxic effects, can have a negative effect on HRQL. Thus, choice of management strategies should take into consideration adverse effects, cost, and convenience, with the goal of enhancing HRQL and subsequent adherence to treatment. Since there are often several different therapeutic options for patients with psoriasis, engaging the patient in the selection of a treatment modality may help to manage expectations and improve adherence. Finally, as reviewed by Richards et al., establishment of an effective doctor–patient relationship can help promote adherence to treatment and thereby improve outcomes.
Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality-of-life factors (e.g., ability to perform daily activities, employability, self-esteem, body image, perceived stigma, quality of interpersonal relationships, and satisfaction with treatment regimen) should be central to the long-term management of psoriasis (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Metrics such as the PDI, DLQI, DQOLS, SF-36, or the PSA Scale should be employed when practical, particularly in patients with self-reported dissatisfaction in treatment response despite improvement in clinical parameters of disease activity (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>When clinically appropriate, patients with psoriasis should be asked about DSM-IV signs of depression (e.g., poor self-esteem, sexual dysfunction, anxiety, and suicidal ideation) (Refs. 11, 12, 65, 66, LoE 1–)</td>
<td>Grade C</td>
</tr>
<tr>
<td>Patients who request referral and those showing evidence of clinically significant anxiety or depression should be treated or referred for mental health consultation (Refs. 35, 60–62, LoE 1–)</td>
<td>Grade C</td>
</tr>
<tr>
<td>Physicians should identify patients at risk of, or with a clear history of, stress-induced exacerbations. Stress-management programs should be considered for such patients (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Practitioners should put in place or strengthen non-pharmacological strategies to improve patients’ quality of life, including establishing good physician–patient rapport and communication and providing appropriate patient and family education (LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>

References

The comorbidities associated with psoriasis are multifactorial and are in many cases linked to inflammation. Immune-mediated inflammatory diseases that arise in conjunction with psoriasis include arthritis, inflammatory bowel disease, cardiovascular disease, and metabolic syndrome. These diseases are thought to arise from related pathogenic mechanisms linked to cytokine dysregulation. In addition to these inflammatory comorbid disorders, psoriasis is associated with depression and other affective disorders.

Both because of the skin disease itself and as a consequence of these various non-cutaneous comorbidities, psoriasis significantly diminishes quality of life and can increase morbidity and even mortality rates, as discussed below. Indeed, one analysis found that the reported reduction in physical and mental functioning associated with psoriasis was similar to that found in cancer, arthritis, hypertension, heart disease, and depression.

Physicians treating psoriasis patients must be aware of the comorbidities and take steps to manage them, either directly or by means of an appropriate referral. Management may be complicated, because certain psoriasis treatments have been found to either mimic or exacerbate existing comorbidities (see Table 1). Conversely, certain drugs used to treat comorbid conditions (see below) may exacerbate the psoriasis of these patients. As discussed in Chapter 8 (Exacerbation and flare of psoriasis), it is usually difficult to establish a firm causal link between a drug treatment and a psoriatic flare. The appropriateness of treatments must therefore be determined on an individual basis. Regardless, physicians should be aware of the risk of iatrogenic complications and should follow up with their patients accordingly.

KEY POINT

People with plaque psoriasis are at a substantially increased risk of inflammatory diseases occurring at sites remote from the skin, including psoriatic arthritis, cardiovascular disease, and inflammatory bowel disease, due to common pathophysiological mechanisms. Young patients have a threefold risk of MI, and severe psoriasis is associated with a 3.5- to 4.4-year reduction in life expectancy in males and females, respectively. Depression and other affective disorders are also more common in psoriasis patients than in the broader population.

Affective disorders

Management of comorbid depression and anxiety is an essential component of psoriasis treatment. As discussed in Chapter 13 (Social and psychological aspects of psoriasis), patients should be referred to a mental health professional if they request such a referral or exhibit signs of clinically significant anxiety or depression.

The use of lithium as a mood stabilizer can be problematic in psoriasis patients because of the risk of causing their skin disease to flare (see Chapter 8: Exacerbation and flare of psoriasis). Psoriasis secondary to lithium treatment in a psychiatric patient has been controlled satisfactorily with etanercept, without the need to discontinue lithium.

Cardiovascular disease

Psoriasis patients are at elevated risk of cardiovascular disease and coronary artery calcification, as well as various components of the metabolic syndrome. The metabolic syndrome is associated with an increased risk of MI and other adverse cardiovascular outcomes.
Some of the associations between psoriasis and metabolic syndrome components are stronger in individuals with earlier age at onset or with more severe skin disease.15,16 Thus, a large-scale epidemiological study in the UK17 showed that, compared to the general population, the relative risk of obesity in individuals with psoriasis was 1.3–1.8, depending on the severity of the psoriasis. This confirms evidence from another study, indicating that prevalence of obesity was 34\% in psoriasis patients, as compared to 18\% in the general population.18 For hypertension and dyslipidemia, relative risks were approximately 1.2 and 1.3, respectively; for diabetes, the relative risk was up to 1.9 for those with severe psoriasis.17 A large cross-sectional study from Israel showed a similar association between psoriasis and each of several components of the metabolic syndrome, including hypertension, hyperlipidemia, and obesity, as well as ischemic heart disease.19

Given these cardiovascular risk factors, cigarette smoking may be particularly worrisome in the psoriatic population, and the rate of smoking is also elevated in this group. Patients who smoke more than 20 cigarettes a day have been reported to be at a > 2-fold increased risk of severe psoriasis, relative to non-smokers.18,20 For all of these reasons, clinicians should advocate smoking cessation programs and any other steps to correct modifiable cardiovascular risk factors.

In addition, primary care physicians and others caring for patients with psoriasis should monitor cardiovascular risk on an ongoing basis. Taking a complete history and doing a full clinical examination that includes blood pressure measurement is a useful first step toward identifying risk factors. Laboratory investigations should also be considered, including a blood lipid profile and fasting glucose measurement. Psoriasis patients are reported to have higher rates of impaired glucose tolerance, insulin resistance, as well as diabetes,17 relative to the general population.21

Patients taking cyclosporine may be at a still greater risk of hypertriglyceridemia and hypertension and should be monitored regularly for these and other cardiovascular risk factors (see Table 1).22-25 Acitretin has likewise been associated with triglyceride elevation, a risk that is particularly common in obese patients and those with diabetes.26

Psoriasis has been identified as an independent risk for MI and adverse outcomes of MI, especially in patients with an early age of onset and more severe disease.15,27 In one large study comparing the incidence of MI in a control population and in psoriasis patients with different levels of severity, psoriasis emerged as an independent risk factor for incidence of MIs. When expressed as a relative risk, this effect was most striking in younger individuals, since the background incidence of MI was low in this population. For instance, in patients 30 years of age, the presence of severe psoriasis was found to increase the risk of MI by a factor of 3.1 compared to age-matched controls. Psoriasis significantly predisposed to MI in other age groups as well.27 This increased MI incidence is directly related to cardiovascular mortality, which has been reported to occur at an elevated rate in individuals with a history of severe psoriasis.15

Few studies have addressed the question of whether effective psoriasis therapy can improve cardiovascular risk factors28 or outcomes, but there is some evidence that methotrexate can decrease the risk of vascular disease. This beneficial effect of methotrexate is attributed to its anti-inflammatory properties and may be enhanced when methotrexate is given in combination with folic acid.29 However, methotrexate should be used with caution, as it can lead to liver fibrosis or cirrhosis, among other adverse responses, particularly in patients with comorbid diabetes10 (see Table 1).

Of the common medications used to treat cardiovascular disease, beta blockers (including atenolol, metoprolol, propranolol, timolol, and oxprenolol) and calcium channel blockers (including nifedipine, amlodipine, and felodipine) have been reported to cause psoriatic flares.31,32 In some cases, the response proved reproducible when the patient was re-challenged with the same drug.31-33 However, there is no evidence that either beta blockers or calcium channel blockers are significantly associated with increased skin involvement in the psoriatic population overall. Furthermore, a population-based case-control analysis of British medical records found no support for an association between antihypertensive drug use and risk of new-onset psoriasis.14
Psoriatic arthritis
Psoriatic arthritis (PsA) is an erosive arthritis occurring in up to 30% of psoriasis patients. The risk of developing PsA is still greater in patients with more extensive skin psoriasis. Joint involvement can significantly reduce QoL relative to uncomplicated psoriasis of comparable severity. Patients with psoriasis should therefore be asked routinely about joint pain and stiffness and should be treated or considered for referral to a rheumatologist if any signs or symptoms of PsA are found.

The pro-inflammatory cytokine TNF-α plays an important role in the pathophysiology of both PsA and psoriasis. It has been proposed that, where possible, a single therapeutic should be used to treat both the rheumatological and dermatological components of PsA to minimize the risk of toxicity that may be associated with polypharmacy. Agents that are effective against both classes of symptoms include methotrexate, cyclosporine, and the TNF inhibitors. All of these biologic and non-biologic options are used in uncomplicated psoriasis and are associated with specific benefits and risks, as outlined in Chapter 6 (Management of moderate to severe plaque psoriasis). The TNF-α antagonists adalimumab, etanercept, and infliximab are generally safe and effective in PsA patients with moderate to severe psoriasis. Methotrexate and cyclosporine can each be effective in this population, and the combination of these two agents has been used for patients with recalcitrant PsA.

Long-term use of cyclosporine is limited by the risk of nephrotoxicity and hypertension. Caution should also be used when prescribing methotrexate, particularly in individuals with diabetes, who are at heightened risk of liver toxicity.

Inflammatory bowel disease
There is a well-established epidemiological link between psoriasis and the inflammatory bowel diseases (Crohn’s disease and ulcerative colitis), apparently reflecting the involvement of a similar cytokine-dependent inflammatory pathway in the gut and the skin (see Chapter 1: Introduction).

Psoriasis is up to seven times more common in individuals with Crohn’s disease than in the general population. Conversely, studies from Canada and Sweden have shown a 1.5–2.9-fold increased risk for Crohn’s disease in individuals with psoriasis. Patients with active inflammatory bowel disease as well as psoriasis should be considered for treatments that target both conditions. Of the systemic antipsoriatic agents, infliximab is approved for treating both Crohn’s disease and ulcerative colitis, and adalimumab is approved for treating Crohn’s disease.

Physicians caring for patients with psoriasis should conduct a thorough medical history to uncover any evidence of inflammatory bowel disease. Patients with signs and symptoms of ulcerative colitis or Crohn’s disease should be referred to a gastroenterologist. In isolated cases, individuals receiving TNF inhibitors have experienced new-onset psoriasis (see Chapter 8: Exacerbation and flare of psoriasis).

Therapies associated with psoriasis and psoriatic comorbidities
Certain drugs used to treat common comorbidities may trigger or exacerbate psoriasis (see Chapter 8: Exacerbation and flare of psoriasis), notably the anxiolytic agent lithium. Physicians treating comorbid conditions should be aware of the risks of using such agents and, equally, should attempt to minimize the danger of exacerbating the comorbidity with their choice of antipsoriatic treatment (Table 1).

Table 1. Antipsoriatic agents that may exacerbate common comorbidities

<table>
<thead>
<tr>
<th>Medication</th>
<th>Adverse reaction</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acitretin</td>
<td>Hypertriglyceridemia</td>
<td>Ref. 26</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>Hypertension</td>
<td>Refs. 22, 23, 25</td>
</tr>
<tr>
<td></td>
<td>Hyperlipidemia</td>
<td>Ref. 24</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Liver toxicity, fibrosis, and cirrhosis, especially in patients with comorbid diabetes or obesity</td>
<td>Refs. 30, 51</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendation & level of evidence</th>
<th>Grade of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients should be urged to stop, or to avoid starting, smoking and should be referred to smoking cessation programs if appropriate (Ref. 20, LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Psoriasis patients should be assessed, monitored, and treated for cardiovascular risk factors associated with metabolic syndrome (obesity, hypertension, dyslipidemia, and hyperglycemia) (Refs. 11, 17, 27, LoE 2++) and for cardiovascular disease, depression, and autoimmune manifestations such as arthritis and inflammatory bowel disease (Refs. 36, 54, 55, LoE 2++)</td>
<td>Grade B</td>
</tr>
<tr>
<td>Patients with moderate to severe psoriasis and concomitant PsA requiring systemic treatment should be considered as candidates for treatment with TNF inhibitors (Refs. 40, 43, 45, LoE 1++)</td>
<td>Grade A</td>
</tr>
<tr>
<td>Psoriasis patients should be referred to a rheumatologist if they experience arthritis or arthralgia and over-the-counter analgesics are inappropriate or not fully efficacious, or in case of doubt about the diagnosis of their rheumatic symptoms (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Psoriasis patients should be referred to a gastroenterologist if they exhibit signs or symptoms of Crohn’s disease or ulcerative colitis (LoE 4)</td>
<td>Grade D</td>
</tr>
<tr>
<td>Patients who exhibit clinically significant signs of anxiety or depression, or who request a referral, should be referred to a mental health care professional (LoE 4)</td>
<td>Grade D</td>
</tr>
</tbody>
</table>
References

CHAPTER 15: THE FUTURE OF PSORIASIS CARE

The clinical landscape of psoriasis care has shifted significantly in recent years with the introduction into the market of new agents engineered to target inflammatory cells and mediators that drive plaque formation. In the coming years, after these Guidelines are published, additional new agents and new approaches will likely be introduced at a similar, if not more rapid, pace. Although the recommendations in these Guidelines are expected to reflect good dermatological practice for the foreseeable future, it is possible to anticipate some of the changes that may cause future readers to reconsider some of the practices described here.

Standards of care in psoriasis treatment

With the increased recognition of quality-of-life issues for psoriasis patients has come a greater impetus for achieving more adequate control if this can be accomplished safely. The newest agents are generally well tolerated and offer the prospect of long-term, clinically significant improvement for patients who failed to control their disease using standard pharmacological and phototherapies.

KEY POINT

Although the recommendations in these Guidelines are expected to reflect good dermatological practice for the foreseeable future, it is possible to anticipate some of the changes that may cause future readers to reconsider some of the practices described in these Guidelines.

It is questionable whether standards of routine care have yet shifted toward more effective treatment, especially for patients receiving primary care for their psoriasis. However, trends in the clinical literature seem to promise more ambitious therapeutic goals. Thus, the clinical benchmarks used in treating psoriasis have shifted. Whereas PASI-75-level improvement continues to be used to define treatment efficacy in clinical trials, randomized controlled trials (RCTs) and retrospective analyses increasingly report PASI-90, and even PASI-100, responses as secondary endpoints.1-3

Similarly, the operational distinction between mild and moderate psoriasis, never well defined, has been subject to ongoing revision.4 If determined by body surface area affected, the cut-off for moderate disease is sometimes taken to be as low as 2%.4 Behind the push for such a liberal definition is the desire to expand the field of patients recognized as requiring aggressive, ongoing therapy. In these Guidelines, we have adopted a more nuanced definition of severity that looks past the numerical ratings to consider the subjective impact of the disease and the patient’s ability to control it to his or her own satisfaction.

Canadian implementation of practices used elsewhere

Canadian psoriasis care will undoubtedly be altered in the coming years by the introduction of therapeutic agents and approaches that are presently in use in other countries. For instance, the requirement for routine liver biopsies to monitor the toxic effects of long-term methotrexate could be significantly reduced if a non-invasive method were available, such as the procollagen III aminopeptide (PIIINP) test.5 This test is currently in routine use in other countries, including the UK, where it has been reported to reduce the need for biopsies by approximately sevenfold. The PIIINP test is not currently available in Canada.

The introduction of drugs not currently available or approved for use in Canada could also have a great effect on routine practice. For instance, fumaric acid esters (FAEs6) are approved and commonly used only in Germany.7 FAEs are oral systemic agents that were originally proposed to act by interfering directly with keratinocyte proliferation. However, it appears that
some FAEs can alter the cytokine secretion profile of circulating T cells, possibly by modulating patterns of gene expression in dendritic cells.8 It is not clear which of the FAEs present in commercially available preparations have the greatest antipsoriatic activity and which ones are responsible for the dose-limiting gastrointestinal side effects and flushing that patients on FAEs report.9 There are no immediate prospects of introducing FAEs onto the Canadian market; it is possible that this will occur only when second-generation, chemically homogeneous, products are available, with better defined mechanisms of action, as well as better efficacy or fewer adverse effects.

New formulations of existing products may have a more immediate impact on psoriasis care. For instance, foam preparations of corticosteroids, which are currently in use in the US, appear to be better accepted by patients, relative to other formulations that are similar or identical in their active components.10,11 Based solely on their cosmetic features, these products may lead to improved adherence and thereby better disease control, particularly of scalp psoriasis.12

Priorities for future research

Prospects for more head-to-head studies
Solid clinical data are badly needed to help refine clinical decision making and tailor therapies for individual patients. To date, active-comparator trials in psoriasis have largely been restricted to topical treatments and occasional studies of alternative phototherapies.11 More trials such as a recent one comparing methotrexate and adalimumab14 are urgently needed to allow physicians to directly evaluate the relative efficacy and safety of various systemic and biologic therapies.

A few active-comparator trials are ongoing (www.clinicaltrials.gov; accessed February 2008), including comparisons of methotrexate versus infliximab and of cyclosporine versus the calcineurin inhibitor voclosporin (formerly ISA247; see below). The first and only registered trial to compare two biologics (etanercept versus the novel agent ustekinumab) began enrolling patients in 2007. However, for the foreseeable future, physicians caring for psoriasis patients will continue to make most of their treatment decisions without the benefit of head-to-head clinical trial data.

Optimized combination treatments
In current dermatological practice, topical agents are commonly combined. Likewise, photochemotherapy approaches such as PUVA and various UVB combination therapies (e.g., with coal tar, retinoids, or vitamin D3 analogues) are well established and, in many cases, highly effective. In contrast, researchers are only beginning to explore combination regimens incorporating the more recent additions to the pharmacological toolkit.15 Combining therapies with distinct targets or complementary mechanisms of action may prove helpful when monotherapies fail.

Individually tailored therapies
The recent dramatic advances in understanding the genetics of psoriasis have yet to affect routine dermatological practice. However, this transition can be expected in coming years, as psoriasis researchers continue to define clinically distinct subtypes of this genetically heterogeneous disorder.

Genetic variation will also help predict response to various therapies. Even today it may be possible to predict responsiveness to vitamin D3 analogues based on genotype at the vitamin D3 receptor locus,16 although there has been little practical incentive to do this in preference to a casual trial of topical therapy. Recent papers are beginning to offer retrospective efficacy analysis based on molecular markers at baseline, such as expression levels of various cytokine genes.17,18 Likewise, it may be possible to identify patients at elevated risk of methotrexate-induced hepatotoxicity on the basis of their genotype at loci related to folate or nucleotide biosynthesis.19

As clinical differences by genotype continue to be explored, e.g., between carriers and non-carriers of the HLA-Cw*0602 allele, it is likely that treatment decisions will be based increasingly on genotype, especially for non-topical therapeutic approaches. An individual’s pharmacogenetic profile and other factors affecting the natural history of the disease20 may ultimately be used to select treatments that will be safe and effective for a given patient.

New agents
In the immediate future, only two novel antipsoriatic agents are likely to become available to Canadian
physicians: voclosporin and ustekinumab. The former is a newer-generation calcineurin inhibitor, structurally similar to cyclosporine, the latter a biologic agent with a new molecular target.

Voclosporin and related small-molecule drugs

Compared to cyclosporine, voclosporin binds its target more tightly, has a simpler pattern of metabolic product, and is more rapidly eliminated. Cyclosporine use is limited by renal toxicity and the need to monitor kidney function on a monthly or semi-monthly basis, but kidney damage may be less of a consideration for voclosporin.

A 24-week phase 3 trial examining a range of voclosporin doses showed significant improvement in psoriasis symptoms as measured by PASI scores. Both efficacy and safety issues were dose-dependent; at the highest dose, there was laboratory evidence of reduced kidney function in 6% of subjects. Incidence of glomerular filtration deficits was less common in patients receiving the lower doses, which offered lower response rates as well (PASI-75 response after 12 weeks in 44% of patients at the highest dose versus 25% at a lower dose). The optimal dosage and therapeutic window for this drug are therefore still undefined.

The use of other calcineurin inhibitors, including both topical and systemic formulations, has also been explored for psoriasis.

Biologics with novel targets

Ustekinumab, an novel biologic agent, is the first drug designed specifically to suppress inflammation by targeting signalling by the interleukin-12 (IL-12) family of cytokines. Earlier biologics act either on TNF signalling (etanercept, infliximab, and adalimumab) or on T cells (alefacept).

IL-12 and the closely related cytokine IL-23 are both dimeric proteins sharing a common subunit, termed p40. Although initially developed as a specific inhibitor of IL-12 signal transduction, ustekinumab binds to p40 and thereby suppresses both IL-12 and IL-23 signalling. IL-23 is produced by several cell types in the psoriatic plaque, including dendritic cells and keratinocytes, and it activates the production of T cells that secrete IL-17 (Th17 cells).

Recent genetic and cellular analyses suggest that suppression of the IL-23 signalling may be the key therapeutic mechanism of ustekinumab. However, it cannot be excluded that suppression of IL-12 contributes as well, since this cytokine promotes the secretion of inflammatory factors such as the classic Th1 cytokine interferon-γ, and ustekinumab blocks this response.

Ustekinumab is expected to offer relatively stable remission from psoriasis, based on two phase 3 trials testing several doses against placebo treatment. In these trials, patients with moderate to severe psoriasis received two initial subcutaneous doses at a 4-week interval, with ongoing injections every 12 weeks thereafter. Disease severity and quality of life were monitored for 52 or 76 weeks. The two trials were consistent in showing PASI-75-level improvement within 12 weeks in the majority of patients, at either of two doses tested (45 or 90 mg). With higher-dose ustekinumab, 100% PASI improvement occurred within 28 weeks in approximately 30% of patients, and this dramatic clinical improvement was reflected in significant betterment in patient quality of life. In some cases, patients who were only partially responsive to higher-dose ustekinumab, i.e., those who experienced PASI-50- but not PASI-75-level improvement, achieved more complete control when the frequency of dosing was increased from once in 12 weeks to once in 8 weeks. No drug-related safety issues were evident from these studies.

In addition to ustekinumab and a similar agent that is also in development (ABT-874), other potentially therapeutic monoclonal antibodies have been generated to target other components of the IL-23/IL-17 axis, such as the p19 subunit of IL-23.

Other therapeutic strategies

Vitamin D analogues, particularly calcipotriol, have emerged as a mainstay of topical therapy for psoriasis. However, this class of agents can cause discomfort on application (local burning) and may, at high doses, confer some risk of dysregulating the patient's calcium metabolism. Becalcidiol is an alternative drug in development that appears to be free of both these risks.
Treatment with retinoids is another classic approach to psoriasis. Retinoids appear to act directly on the keratinocyte cells to suppress their abnormal proliferation and differentiation in the psoriatic plaque. They can be effective, but their use in women is limited by their potent teratogenic action. For instance, acitretin is strictly contraindicated in women of childbearing age unless the patient can be relied on to use effective contraception for at least 3 years after treatment.

Because retinoic acid is naturally present in the skin, drugs that inhibit its catabolism (retinoic acid metabolism-blocking agents; RAMBAs) can have a therapeutic effect mimicking that of retinoids. The RAMBA liarozole has been shown to offer significant control of psoriasis over a 12-week period. A second generation agent in this class, talarozole, likewise restores normal skin histology to plaques within 8 weeks. The safety of this approach in the psoriasis population has not been established. Based on theoretical considerations and preclinical data, it is reasonable to assume that RAMBAs are teratogenic and will not be suitable for women considering becoming pregnant, although they may not require an extended washout period like that used for acitretin.

An alternative approach to preventing plaque formation is to block the migration of inflammatory cells, as with alefacept treatment. Other large- and small-molecule drugs that interfere with this process could be chosen to target either chemokines (signalling molecules that induce leukocyte movement) and chemokine receptors or adhesive molecules such as selectins, which allow circulating cells to adhere to and move across the endothelial lining and enter inflamed tissues.

Similarly, it is possible to target the intracellular signalling pathways by which immunocytes in the psoriatic plaque become activated. Molecular targets include mediators of signalling through cytokine receptors (notably Jak3 and its downstream Stat proteins), Toll-like receptors (NF-kB and molecules that affect its localization or stability), and G-protein-coupled receptors (components of the MAP kinase pathway). In many cases, therapeutic agents specific for these signalling molecules have been developed for other indications (reviewed in O’Neill). It is therefore likely that some of these agents will be tested off-label for their efficacy in psoriasis.

Finally, monochromatic excimer laser therapy has been explored as an alternative to standard phototherapies for treating psoriasis at various areas, including the scalp, the palms and soles, and flexures.

Primary prevention

Streptococcal throat infections have long been suspected to induce guttate psoriasis in children and young adults and to aggravate adult plaque psoriasis. It has been suggested that the M protein from certain strains of *Streptococcus pyogenes* includes antigenic peptides that activate pathogenic T cells in HLA-Cw*0602-positive individuals. These T cells are proposed to be activated within the infected tonsils and to acquire the CTA+ phenotype, which allows them to home to the skin. The interaction between these CTA+ T cells (presumably of the T h1 or T h-17 subtype) and the antigen-presenting cells in the skin is not yet fully defined. However, the mechanism offers the hope of interfering with the earliest stages of pathogenesis, potentially by vaccinating an appropriate, genetically defined subpopulation using specific streptococcal antigens.

Persistence

Advances in psoriasis research continue to yield new approaches that promise ever more complete control of plaque psoriasis. The developments may well revolutionize care in coming years. However, they are unlikely to change the fundamental need, noted in the introduction, for active engagement with the patient to ensure that the selected treatment is used consistently and appropriately. Our hard-won insights on the limits of treatment persistence in the real world will apply, no matter how subtly targeted the treatment options become. Even the most sophisticated drugs only work if the patient uses them.
CHAPTER 15 - THE FUTURE OF PSORIASIS CARE

Canadian Guidelines for the Management of Plaque Psoriasis

References

APPENDIX: TRADE NAME/GENERIC NAME TRANSLATOR

Because generic names are used throughout these Guidelines, text searches of the electronic document using trade names for drugs will not identify the relevant pages. Readers who are uncertain of the correct generic name of a drug may consult the table below to identify a searchable drug name.

Although this list is as thorough as possible, it is provided as a guide only; it is not guaranteed to be complete.

<table>
<thead>
<tr>
<th>Trade name or trivial name</th>
<th>Generic name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abelcet</td>
<td>Amphotericin B</td>
<td></td>
</tr>
<tr>
<td>Adalat</td>
<td>Nifedipine</td>
<td></td>
</tr>
<tr>
<td>Alkeran</td>
<td>Melphalan</td>
<td></td>
</tr>
<tr>
<td>Ambisome</td>
<td>Amphotericin B</td>
<td></td>
</tr>
<tr>
<td>Amevive</td>
<td>Alefacept</td>
<td></td>
</tr>
<tr>
<td>Amphotec</td>
<td>Amphotericin B</td>
<td></td>
</tr>
<tr>
<td>Anthraforte</td>
<td>Anthralin</td>
<td></td>
</tr>
<tr>
<td>Anthranol</td>
<td>Anthralin</td>
<td></td>
</tr>
<tr>
<td>AnthraScalp</td>
<td>Anthralin</td>
<td></td>
</tr>
<tr>
<td>Apo-Atenidone</td>
<td>Atenolol</td>
<td>Formulated as atenolol plus chlorothalidone</td>
</tr>
<tr>
<td>Apo-Atenol</td>
<td>Atenol</td>
<td></td>
</tr>
<tr>
<td>Apo-Azathioprine</td>
<td>Azathioprine</td>
<td></td>
</tr>
<tr>
<td>Apo-Ciproflox</td>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Apo-Cyclosporine</td>
<td>Cyclosporine</td>
<td></td>
</tr>
<tr>
<td>Apo-Digoxin</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>Apo-Fenofibrate</td>
<td>Fenofibrate</td>
<td></td>
</tr>
<tr>
<td>Apo-Hydroxyquine</td>
<td>Hydroxychloroquine sulfate</td>
<td></td>
</tr>
<tr>
<td>Apo-Lithium Carbonate</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>Apo-Methotrexate</td>
<td>Methotrexate</td>
<td></td>
</tr>
<tr>
<td>Apo-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Apo-Nifed</td>
<td>Nifedipine</td>
<td></td>
</tr>
<tr>
<td>Apo-Phenylbutazone; Apo Phenylbutazone</td>
<td>Phenylbutazone</td>
<td></td>
</tr>
<tr>
<td>Apo-Propranolol</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Apo-Sulfasalazine; Apo Sulfasalazine</td>
<td>Sulfasalazine</td>
<td></td>
</tr>
<tr>
<td>Apo-Sulfatrim</td>
<td>Trimethoprim/sulfamethoxazole combination product; cotrimoxazole (also search by names of component drugs)</td>
<td>Formulated as trimethoprim plus sulfamethoxazole</td>
</tr>
<tr>
<td>Apo-Theo-La</td>
<td>Theophylline</td>
<td></td>
</tr>
<tr>
<td>Apo-Timol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Apo-Timop</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Apo-Trimethoprim</td>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Apo-Zidovudine; Apo Zidovudine</td>
<td>Zidovudine</td>
<td></td>
</tr>
<tr>
<td>Arava</td>
<td>Leflunomide</td>
<td></td>
</tr>
<tr>
<td>Aristocort</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide</td>
</tr>
<tr>
<td>AZT</td>
<td>Zidovudine</td>
<td></td>
</tr>
<tr>
<td>BCI-Atenolol</td>
<td>Atenolol</td>
<td></td>
</tr>
<tr>
<td>Benuryl</td>
<td>Probenecid</td>
<td></td>
</tr>
<tr>
<td>Betaderm</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone valerate</td>
</tr>
<tr>
<td>Betaject</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone 21-disodium phosphate plus betamethasone acetate</td>
</tr>
<tr>
<td>Betaloc</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Betnesol</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone sodium phosphate</td>
</tr>
<tr>
<td>Bezalip</td>
<td>Bezafibrate</td>
<td></td>
</tr>
<tr>
<td>Caduet</td>
<td>Amlodipine</td>
<td>Formulated as amlodipine besylate plus atorvastatin</td>
</tr>
<tr>
<td>Carbolith</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>Celestone Soluspan Injectable</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone sodium phosphate plus betamethasone acetate</td>
</tr>
<tr>
<td>Cellcept</td>
<td>Mycophenolate mofetil</td>
<td></td>
</tr>
<tr>
<td>Cerebyx</td>
<td>Fosphenytoin sodium</td>
<td></td>
</tr>
<tr>
<td>Ciloxan</td>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Cipro</td>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Clobera</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>CO Atenolol</td>
<td>Atenolol</td>
<td></td>
</tr>
<tr>
<td>Colchicine</td>
<td>Colchicine</td>
<td></td>
</tr>
<tr>
<td>Combigan</td>
<td>Timolol</td>
<td>Formulated as timolol maleate plus brimonidine tartrate</td>
</tr>
<tr>
<td>Combivir</td>
<td>Zidovudine</td>
<td>Formulated as zidovudine plus lamivudine</td>
</tr>
<tr>
<td>Cosopt</td>
<td>Timolol</td>
<td>Formulated as timolol maleate plus dorzolamide hydrochloride</td>
</tr>
<tr>
<td>Cutivate</td>
<td>Fluticasone propionate</td>
<td></td>
</tr>
<tr>
<td>Cyclocort</td>
<td>Amcinonide</td>
<td></td>
</tr>
<tr>
<td>Denorex</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus chloroxylenol and menthol</td>
</tr>
<tr>
<td>Dermovate</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>Digibind</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>Dilantin</td>
<td>Phenytoin</td>
<td></td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Diprolene Glycol</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Diprosecal</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate plus salicylic acid</td>
</tr>
<tr>
<td>Diproson</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Dithranol</td>
<td>Anthralin</td>
<td></td>
</tr>
<tr>
<td>Doak Oil</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Dom-Fenofibrate</td>
<td>Fenofibrate</td>
<td></td>
</tr>
<tr>
<td>Dom-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Dom-Propranolol</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Dom-Timolol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Dovobet</td>
<td>Calcipotriol/betamethasone combination product (also search by names of component drugs)</td>
<td>Formulated as betamethasone dipropionate plus calcipotriol</td>
</tr>
<tr>
<td>Dovonex</td>
<td>Calcipotriol</td>
<td></td>
</tr>
<tr>
<td>Duotrav</td>
<td>Timolol</td>
<td>Formulated as timolol maleate plus travoprost</td>
</tr>
<tr>
<td>Duralith</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>Efudex</td>
<td>Fluorouracil</td>
<td></td>
</tr>
<tr>
<td>Elidel</td>
<td>Pimecrolimus</td>
<td></td>
</tr>
<tr>
<td>Enbrel</td>
<td>Etanercept</td>
<td></td>
</tr>
<tr>
<td>Exorex</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Fenomax</td>
<td>Fenofibrate</td>
<td></td>
</tr>
<tr>
<td>Fluoroplex</td>
<td>Fluorouracil</td>
<td></td>
</tr>
<tr>
<td>Fungizone</td>
<td>Amphotericin B</td>
<td></td>
</tr>
<tr>
<td>Gen-Azathioprine</td>
<td>Azathioprine</td>
<td></td>
</tr>
<tr>
<td>Gen-Clobetasol</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>Gen-Hydroxychloroquine</td>
<td>Hydroxychloroquine sulfate</td>
<td></td>
</tr>
<tr>
<td>Gen-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Gluconorm</td>
<td>Repaglinide</td>
<td></td>
</tr>
<tr>
<td>Humira</td>
<td>Adalimumab</td>
<td></td>
</tr>
<tr>
<td>Hydrea</td>
<td>Hydroxyurea</td>
<td></td>
</tr>
<tr>
<td>Imuran</td>
<td>Azathioprine</td>
<td></td>
</tr>
<tr>
<td>Inderal</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Kenalog</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide</td>
</tr>
<tr>
<td>Lanoxin</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lidemol</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Lidex</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Lipidil</td>
<td>Fenoibrate</td>
<td></td>
</tr>
<tr>
<td>Lithane</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>Lithium Benziocum</td>
<td>Lithium</td>
<td>Formulated as lithium benzoate</td>
</tr>
<tr>
<td>Lithium Carbonicu</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>Lopresor</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Lyderm</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Mazon Medicated Cream</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus resorcinol and salicylic acid</td>
</tr>
<tr>
<td>Medi-Dan Shampoo</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus benzalkonium chloride and salicylic acid</td>
</tr>
<tr>
<td>Med-Timolol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Metoject</td>
<td>Methotrexate</td>
<td></td>
</tr>
<tr>
<td>Multi-Tar Plus Shampoo</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus juniper tar, pine tar, and pyrithione zinc</td>
</tr>
<tr>
<td>Neoral</td>
<td>Cyclosporine</td>
<td></td>
</tr>
<tr>
<td>Nerisalic</td>
<td>Diflucortolone valerate</td>
<td>Formulated as diflucortolone valerate plus salicylic acid</td>
</tr>
<tr>
<td>Nerisone</td>
<td>Diflucortolone valerate</td>
<td></td>
</tr>
<tr>
<td>Norvasc</td>
<td>Amlodipine</td>
<td></td>
</tr>
<tr>
<td>Novo-Azathioprine</td>
<td>Azathioprine</td>
<td></td>
</tr>
<tr>
<td>Novo-AZT</td>
<td>Zidovudine</td>
<td></td>
</tr>
<tr>
<td>Novo-Chloroquine</td>
<td>Chloroquine</td>
<td></td>
</tr>
<tr>
<td>Novo-Clobetasol</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>Novo-Fenofibrate</td>
<td>Fenoibrate</td>
<td></td>
</tr>
<tr>
<td>Novo-Metoprol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Novo-Phenytoin</td>
<td>Phenytoin</td>
<td></td>
</tr>
<tr>
<td>Novo-Pranol</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Novo-Theophyl</td>
<td>Theophylline</td>
<td></td>
</tr>
<tr>
<td>Novo-Timol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Novo-Trimel</td>
<td>Trimethoprim/sulfamethoxazole combination product; cotrimoxazole (also search by names of component drugs)</td>
<td>Formulated as trimethoprim plus sulfamethoxazole</td>
</tr>
<tr>
<td>Nu-Cotrimox</td>
<td>Trimethoprim/sulfamethoxazole combination product; cotrimoxazole (also search by names of component drugs)</td>
<td>Formulated as trimethoprim plus sulfamethoxazole</td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Nu-Fenofibrate</td>
<td>Fenofibrate</td>
<td></td>
</tr>
<tr>
<td>Nu-Metop</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Nu-Propranolol</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Nu-Timol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Odans Liquor Carbonis Detergens</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus benzocaine and salicylic acid</td>
</tr>
<tr>
<td>Oxipor</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>P&S Plus</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus salicylic acid</td>
</tr>
<tr>
<td>Pekana-colchicinum</td>
<td>Colchicine</td>
<td></td>
</tr>
<tr>
<td>Pentrax</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>PHL-Lithium Carbonate</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>PHL-Fenofibrate</td>
<td>Fenofibrate</td>
<td></td>
</tr>
<tr>
<td>PHL-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Plaquinil</td>
<td>Hydroxychloroquine sulfate</td>
<td></td>
</tr>
<tr>
<td>Plendil</td>
<td>Felodipine</td>
<td></td>
</tr>
<tr>
<td>PMS-Bezafibrate</td>
<td>Bezafibrate</td>
<td></td>
</tr>
<tr>
<td>PMS-Lithium Carbonate</td>
<td>Lithium</td>
<td>Formulated as lithium carbonate</td>
</tr>
<tr>
<td>PMS-Digoxin</td>
<td>Digoxin</td>
<td></td>
</tr>
<tr>
<td>PMS-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>PMS-Polytrimethoprim</td>
<td>Trimethoprim</td>
<td>Formulated as trimethoprim sulfate plus polymyxin B sulfate</td>
</tr>
<tr>
<td>PMS-Propranolol</td>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>PMS-Sulfasalazine</td>
<td>Sulfasalazine</td>
<td></td>
</tr>
<tr>
<td>PMS-Theophylline</td>
<td>Theophylline</td>
<td></td>
</tr>
<tr>
<td>PMS-Timolol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>PMS-Vancomycin</td>
<td>Vancomycin</td>
<td></td>
</tr>
<tr>
<td>Prevec B</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone valerate</td>
</tr>
<tr>
<td>Pro-Hydroxyquine</td>
<td>Hydroxychloroquine sulfate</td>
<td></td>
</tr>
<tr>
<td>Protopic</td>
<td>Tacrolimus</td>
<td></td>
</tr>
<tr>
<td>Protrin</td>
<td>Trimethoprim/sulfamethoxazole combination product; cotrimoxazole (also search by names of component drugs)</td>
<td>Formulated as trimethoprim plus sulfamethoxazole</td>
</tr>
<tr>
<td>Psoriasin</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Pulmophylline</td>
<td>Theophylline</td>
<td></td>
</tr>
<tr>
<td>Purinethol</td>
<td>Mercaptopurine</td>
<td></td>
</tr>
<tr>
<td>Rambazole</td>
<td>Talarozole</td>
<td>Not available in Canada</td>
</tr>
<tr>
<td>Raptiva</td>
<td>Efalizumab</td>
<td>Removed from Canadian market in 2009</td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Ratio-Amcinonide</td>
<td>Amcinonide</td>
<td></td>
</tr>
<tr>
<td>Ratio-Clobetasol</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>Ratio-Ectosone</td>
<td>Betamethasone</td>
<td></td>
</tr>
<tr>
<td>Ratio-Fluticasone</td>
<td>Fluticasone propionate</td>
<td></td>
</tr>
<tr>
<td>Ratio-Methotrexate Sodium</td>
<td>Methotrexate</td>
<td></td>
</tr>
<tr>
<td>Ratio-Theo-Bronc</td>
<td>Theophylline</td>
<td>Formulated as theophylline plus guaifenesin, potassium iodide, and pyrilamine maleate</td>
</tr>
<tr>
<td>Ratio-Topilene</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Ratio-Topisalic</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate plus salicylic acid</td>
</tr>
<tr>
<td>Ratio-Topisone</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Ratio-Triacomb</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide plus gramicidin, neomycin sulfate, and nystatin</td>
</tr>
<tr>
<td>Remicade</td>
<td>Infliximab</td>
<td></td>
</tr>
<tr>
<td>Renedil</td>
<td>Felodipine</td>
<td></td>
</tr>
<tr>
<td>Retrovir</td>
<td>Zidovudine</td>
<td></td>
</tr>
<tr>
<td>Rhoxl-Timolol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Riva-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Rivasone Scalp</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone valerate</td>
</tr>
<tr>
<td>Rolene</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Rosone</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>S J Liniment</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus ammonium hydroxide, menthol, and methyl salicylate</td>
</tr>
<tr>
<td>Salazopyrin</td>
<td>Sulfasalazine</td>
<td></td>
</tr>
<tr>
<td>Sandoz Cyclosporine</td>
<td>Cyclosporine</td>
<td></td>
</tr>
<tr>
<td>Sandoz Felodipine</td>
<td>Felodipine</td>
<td></td>
</tr>
<tr>
<td>Sandoz Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
<tr>
<td>Sandoz Timolol</td>
<td>Timolol</td>
<td></td>
</tr>
<tr>
<td>Sebcur</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus salicylic acid</td>
</tr>
<tr>
<td>Septra</td>
<td>Trimethoprim/sulfamethoxazole combination product; cotrimoxazole (also search by names of component drugs)</td>
<td>Formulated as trimethoprim plus sulfamethoxazole</td>
</tr>
<tr>
<td>Soriatane</td>
<td>Acitretin</td>
<td></td>
</tr>
<tr>
<td>Trade name or trivial name</td>
<td>Generic name</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Stelara</td>
<td>Ustekinumab</td>
<td></td>
</tr>
<tr>
<td>Sterex</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus salicylic acid, sulfur, and/or hydrocortisone</td>
</tr>
<tr>
<td>T Gel; T/Gel Therapeutic Shampoo</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Tardan</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus salicylic acid and triclosan</td>
</tr>
<tr>
<td>Tarigel</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Taro-Sone</td>
<td>Betamethasone</td>
<td>Formulated as betamethasone dipropionate</td>
</tr>
<tr>
<td>Taro-Amcinonide</td>
<td>Amcinonide</td>
<td></td>
</tr>
<tr>
<td>Taro-Clobetasol</td>
<td>Clobetasol</td>
<td></td>
</tr>
<tr>
<td>Taro-Phenytoin</td>
<td>Phenytoin</td>
<td></td>
</tr>
<tr>
<td>Tazorac</td>
<td>Tazarotene</td>
<td>Removed from Canadian market in 1996</td>
</tr>
<tr>
<td>Tersa Tar Shampoo</td>
<td>Coal tar</td>
<td></td>
</tr>
<tr>
<td>Theraderm</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide plus gramicidin, neomycin sulfate, and nystatin</td>
</tr>
<tr>
<td>Tiamol</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Topactin</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Topsyn</td>
<td>Fluocinonide</td>
<td></td>
</tr>
<tr>
<td>Trasicor</td>
<td>Oxprenolol</td>
<td>Discontinued in 2007</td>
</tr>
<tr>
<td>Tremytoin</td>
<td>Phenytoin</td>
<td></td>
</tr>
<tr>
<td>Triaderm</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide</td>
</tr>
<tr>
<td>Trizivir</td>
<td>Zidovudine</td>
<td>Formulated as zidovudine plus lamivudine and abacavir sulfate</td>
</tr>
<tr>
<td>Ultravate</td>
<td>Halobetasol propionate</td>
<td></td>
</tr>
<tr>
<td>Vancocin</td>
<td>Vancomycin</td>
<td></td>
</tr>
<tr>
<td>Vepesid</td>
<td>Etoposide</td>
<td></td>
</tr>
<tr>
<td>Viaderm KC</td>
<td>Triamcinolone</td>
<td>Formulated as triamcinolone acetonide plus gramicidin, neomycin sulfate, and nystatin</td>
</tr>
<tr>
<td>Xamiol</td>
<td>Calcipotriol/betamethasone</td>
<td>Formulated as betamethasone dipropionate plus calcipotriol</td>
</tr>
<tr>
<td>X-Seb T-Plus Conditioning Shampoo</td>
<td>Coal tar</td>
<td>Formulated as coal tar plus menthol and salicylic acid</td>
</tr>
<tr>
<td>Zanidip</td>
<td>Lercanidipine</td>
<td>Not available in Canada</td>
</tr>
<tr>
<td>Zym-Metoprolol</td>
<td>Metoprolol</td>
<td></td>
</tr>
</tbody>
</table>